Skip to main content
Log in

Presence of AVT-, α-MSH-, LHRH- and somatostatin-like compounds in the rat pineal gland and their relationship with the UMO5R pineal fraction

An immunocytochemical study

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Using antibodies against AVT, α-MSH, LHRH and somatostatin, immunoreactive cells were detected in the rat pineal gland. All of these antibodies stain the same cells, which also react immunocytochemically when an antibody against the UMO5R sheep pineal fraction, a fraction that presents antigonadotropic properties in vivo, is used. Relatively more immunoreactive cells are present in the pineals of young rats than in the pineals of adult animals. Comparison of the results obtained with different potent antibodies against each of the peptides, and a study of the staining properties of the antibodies in the pineal after solid phase adsorption to different peptides or to different sheep pineal fractions, led to the proposal that the immunoreactivity found in the rat pineal is not due to the presence of AVT, α-MSH, LHRH or somatostatin, but to a cross-reaction of each of these antibodies with (an) unidentified compound(s). This compound is synthetized in the pineal gland, as was demonstrated using cultured pineals. The UMO5R and the Prot. 4 fractions of the sheep pineal seem to be chemically related to this unknown compound, the possible endocrine nature of which is discussed.

Resumé

En utilisant des anticorps contre l'AVT, l'α-MSH, le LHRH et la somatostatine, des cellules épiphysaires du Rat ont été immunocytochimiquement colorées. Tous ces anticorps colorent les mêmes cellules. Ces cellules réagissent également quand un anticorps est utilisé contre la fraction épiphysaire UMO5R, fraction qui est douée de propriétés antigonadotropiques in vivo. Il a également été montré que le nombre des cellules immunoréactives était plus important dans la pinéale du jeune rat que dans celle de l'adulte.

La comparaison des résultats obtenus avec différents anticorps et l'étude des propriétés de ces anticorps aprés absorption sur différents peptides ou sur différentes fractions épiphysaires, a permis de conclure que les réactions obtenues dans la pinéale du rat n'étaient que la conséquence d'une réaction croisée de ces anticorps avec une/des substance(s) inconnue(s) synthétisée(s) par la pinéale elle-même. La nature endocrine possible de cette substance qui serait chimiquement apparenté aux fractions épiphysaires Mouton UMO5R et Prot. 4, est discutée.

Drs. B.L. Baker (Ann Arbor, Mich., USA), M.P. Dubois (Nouzilly, France), J. De Mey (Beerse, Belgium), J.D. Fernstrom (Cambridge, Mass., USA.), H. Goos (Utrecht, The Netherlands), B. Kerdelhué (Gif-sur-Yvette, France) and A.G.E. Pearse (London, U.K.) are also acknowledged for their gifts of various antibodies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod J, Shein HM, Wurtman RJ (1969) Stimulation of C14-melatonin synthesis from C14-tryptophan by noradrenalin in rat pineal organ culture. Proc Natl Acad Sci 64:544–549

    Google Scholar 

  • Baker BL, Dermody WC, Reel Jr (1974) Localization of luteinizing hormone-releasing hormone in the mammalian hypothalamus. Am J Anat 139:129–134

    Google Scholar 

  • Barry J (1979) Immunofluorescence study of the preoptico-terminal LRH tract in the female squirrel monkey during the estrous cycle. Cell Tissue Res 198:1–13

    Google Scholar 

  • Barry J, Dubois MP, Poulain P (1973) LRF producing cells of the mammalian hypothalamus. Z Zellforsch 146:351–366

    Google Scholar 

  • Benson B (1977) Current status of pineal peptides. Neuroendocrinology 24:241–258

    Google Scholar 

  • Benson B, Matthew MJ, Ortis RJ (1972) Presence of an antigonadotropic substance in the rat pineal incubation media. Life Sci 11:669–677

    Google Scholar 

  • Berg GR, Klein DC (1971) Pineal gland in organ culture. II. role of adenosine 3′-5′-monophosphate in regulation of radiolabeled melatonin production. Endocrinology 89:453–464

    Google Scholar 

  • Bianchi P, Osima B (1960), Boll Soc Ital Biol Sper 36:1647–1677, cited in Reiter and Vaughan (1977)

    Google Scholar 

  • Blask DE, Vaughan MK, Reiter RJ, Johnson LY, Vaughan GM (1979) Prolactin-releasing and releasefninhibiting factor activities in the bovine rat and human pineal gland: in vitro and in vivo studies. Endocrinology 99:152–162

    Google Scholar 

  • Bowie EP, Eng LF (1978) A comparative study of astrocytes and AVT cells in the rat pineal. Anat Rec 192 no. 1, p 121

  • Bowie EP, Herbert DC (1976) Immunocytochemical evidence for the presence of arginine vasotocin in the rat pineal gland. Nature (Lond.) 261:66

    Google Scholar 

  • Buijs RM, Pévet P (1980) Vasopressin and oxytocin containing fibres in the pineal gland and subcommissural organ of the rat. Cell Tissue Res (in press)

  • Buijs RM, Swaab DF, Dogterom J, Van Leeuwen FW (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 186:423–433

    Google Scholar 

  • Carson RS, Matthews CD, Findley JK, Symons RG, Burger HG (1977) Biological and immunological luteinizing hormone-releasing hormone (LH-RH) activity of the ovine pineal. Neuroendocrinology 24:221–225

    Google Scholar 

  • Changaris DG, Keil LC, Severs WB (1979) Angiotensin II immunohistochemistry of the rat brain. Neuroendocrinology 25:257–274

    Google Scholar 

  • Chazov MM, (Russian) Dokl Acad Nauk SSSR 27:246–248. Cited in Reiter and Vaughan (1977)

    Google Scholar 

  • Dilman VM, Anisimov MN (Russian) (1975) Bull Exp Biol Med 80:1371–1373. Cited in Reiter and Vaughan (1977)

    Google Scholar 

  • Dogterom J, Snijdewint FGM, Pévet P, Buijs RM (1979) On the presence of neuropeptides in the mammalian pineal gland and subcommissural organ. In: Ariens Kapper J, Pévet P (eds) The Pineal Gland of Vertebrates including Man. Elsevier, Amsterdam, pp 465–470

    Google Scholar 

  • Dogterom J, Snijdewint FGM, Pévet P, Swaab DF (1980) Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and foetal pituitary gland: Failure to demonstrate vasotocin in mammals. J Endocrinol (in press)

  • Ebels I (1975) Pineal factors other than melatonin. Gen Comp Endocrinol 25:189–198

    Google Scholar 

  • Ebels I (1976) Isolation of avian and mammalian pineal indoles and anti-gonadotropic factors. Am Zool 16:5–15

    Google Scholar 

  • Ebels I, Benson B, Metthews MJ (1973) Localization of a sheep pineal antigonadotropin. Analyt Biochem 56:546–565

    Google Scholar 

  • Hökfelt K, Fuxe K, Johansson O, Jeffcoat SL, White N (1975) Distribution of thyrotropin-releasing hormone (TRH) in the central nervous system as revealed with immunohistochemistry. Europ J Pharmacol 34:389–392

    Google Scholar 

  • Jackson IMD, Saperstein R, Reichlin S (1977) Thyrotropin releasing hormone (TRH) in pineal and hypothalamus of the frog: Effect of season and illumination. Endocrinology 100:97–100

    Google Scholar 

  • Kappers J Ariëns (1979) Short history of pineal discovery and research. In: Ariëns Kappers J. Pévet P (eds) The Pineal Gland of Vertebrates including Man, Elsevier, Amsterdam, pp 3–22

    Google Scholar 

  • Kappers J Ariëns, Pévet P (1979) The Pineal Gland of Vertebrates including Man. Progress in Brain Res 52: Elsevier Amsterdam

  • Karasek M (1974) Ultrastructure of rat pineal gland in organ culture; influence of norepinephrine, dibutyryl cyclic adenosine 3′,5′-monophosphate and adenohypophysis. Endokrinologie 64:1, 106–114

    Google Scholar 

  • Møller M, Ingild A, Bock E (1978) Immunohistochemical demonstration of S-100 protein and GFAprotein in interstitial cells of rat pineal gland. Brain Res 140:1–13

    Google Scholar 

  • Moszkowska A, Ebels I (1971) The influence of the pineal body on the gonadotropic function of the hypophysis. J Neurovisc Relat, Suppl 10:160–175

    Google Scholar 

  • Neacsu C (1972) The mechanism of an antigonadotropic action of a polypeptide extracted from a bovine pineal gland. Rev Roum Physiol 9:161–169

    Google Scholar 

  • Oliver C, Porter JC (1978) Distribution and characterization of α-melanocyte-stimulating hormone in the rat brain. Endocrinology 102:3, 697–705

    Google Scholar 

  • Pavel S (1979) The mechanism of action of vasotocin in the mammalian brain. In: Ariëns Kappers J, Pévet P (eds), The Pineal Gland of Vertebrates including Man, Elsevier, Amsterdam, pp 445–458

    Google Scholar 

  • Pavel S, Petrescu S (1966) Inhibition of gonadotropin by a highly purified pineal peptide and by synthetic arginine vasotocin. Nature (Lond) 212:1054

    Google Scholar 

  • Pavel S, Goldstein R, Calb M (1975) Vasotocin content in the pineal gland of foetal, newborn and adult male rats. J Endocrinol 66:283–284

    Google Scholar 

  • Pelletier G, Leclerc R, Dubé D, Labrie F, Buviani R, Arimura A, Schally AV (1975) Localization of growth-hormone release inhibiting hormone (somatostatin) in the rat brain. Am J Anat 142:397–400

    Google Scholar 

  • Pévet P (1979) Secretory processes in the mammalian pinealocyte under natural and experimental conditions. In: Ariëns Kappers J, Pévet P (eds) the Pineal Gland of Vertebrates including Man. Elsevier, Amsterdam, pp 149–194

    Google Scholar 

  • Pévet P (1980) Ultrastructure of the mammalian pinealocytes. In: Reiter RJ (ed) The Pineal, Anatomy and biochemistry, CRC Press, Palmbeach, USA (in press)

    Google Scholar 

  • Powel O, Krabanek S, Cannon D (1977) Substance P: Radioimmunoassay studies. In: Von Euler US, Pernow B (eds) Substance P. Raven Press, New York, pp 35–40

    Google Scholar 

  • Reiter RJ (1978) The Pineal and Reproduction. Karger, Basel

    Google Scholar 

  • Reiter RJ, Vaughan MK (1977) Pineal antigonadotrophic substances: polypeptides and indoles. Life Sci 21:139–172

    Google Scholar 

  • Rudman D, Scott JW (1975) Melanotropic-lipolytic peptides of the pineal gland and other CNS regions. In: Altschule MD (ed), Frontiers of Pineal Physilogy. The MIT Press, Cambridge, Mass, pp 44–53

    Google Scholar 

  • Skowsky WR, Fisher DA (1972) The use of thyroglobulin to induce antigenicity to small molecules. L Lab Clin Med 80:134–144

    Google Scholar 

  • Slama-Scemama A, l'Heritier A, Moszkowska A, Van der Horst CJG, Noteboom HPJM, De More A, Ebels I (1979) Effect of sheep pineal fractions on the activity of male rat hypothalami in vitro. J Neural Transm 46:47–58

    Google Scholar 

  • Sternberger LA (1974) Immunocytochemistry. In: Osler A, Weiss L (ed) Foundation of Immunology Series. Prentice Hall Inc, Englewood Cliffs NJ

    Google Scholar 

  • Swaab DF, Fisser B (1977) Immunocytochemical localization of α-melanocyte stimulating hormone (αMSH)-like compounds in the rat nervous system. Neurosci Lett 7:313–317

    Google Scholar 

  • Swaab DF, Pool CW (1975) Specificity of oxytocin and vasopressin immunofluorescence. J Endocrinol 66:263–272

    Google Scholar 

  • Swaab DF, Pool CW, Nijveldt F (1975) Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophyseal system. J Neural Transm 36:195–215

    Google Scholar 

  • Swaab DF, Visser M, Tilders FJH (1976) Stimulation of intra-uterine growth in rat by α-melanocyt-estimulating hormone. J Endocrinol 70:445–455

    Google Scholar 

  • Thieblot L, Blaise S, Alassimone A (1966) Essai de caracterisation du principe antigonadotrope de la glande pinéale. CR Soc Biol 160:1574–1576

    Google Scholar 

  • Turner CD, Bagnara JT (1976) General Endocrinology. WB Saunders Comp Philadelphia

    Google Scholar 

  • Van Leeuwen FW, De Raay C, Swaab DF, Fisser B (1979) The localization of oxytocin, vasopressin, somatostatin and luteinizing hormone releasing hormone in the rat neurohypophysis. Cell Tissue Res 202:189–201

    Google Scholar 

  • Vaudry M, Tonon MC, DeLarue L, Vaillant R, Kraicer J (1978) Biological and radioimmunological evidence for melanocyte stimulating hormones (MSH) of extrapituitary origin in the rat brain. Neuroendocrinology 27:9–24

    Google Scholar 

  • Vaughan MK, Reiter RJ, McKinney T, Vaughan GM (1974) Inhibition of growth of gonadal dependent structures by arginine vasotocin and purified bovine pineal fractions in immature mice and hamsters. Int J Fert 19:103–106

    Google Scholar 

  • White WF, Hedlund MT, Weber GF, Rippel RM, Johnson ES, Wilber J (1974) The pineal gland: A supplemental source of hypothalamic releasing hormones. Endocrinology 94:5 1422–1426

    Google Scholar 

  • Wurtman RJ, Ozaki Y (1978) Physiological control of melatonin synthesis and secretion: Mechanisms generating rhythms in melatonin, methoxytryptophol and arginine vasotocin levels and effects on the pineal of endogenous catecholamines, the estrous cycle and environmental lighting. In: Wurtman RJ (eds) The Pineal Gland. Springer Verlag, Wien, pp 59–71

    Google Scholar 

  • Youngblood WW, Humm J, Kizer JS (1979) TRH-like immunoreactivity in rat pancreas and eyes, bovine and sheep pineals, and human placenta: Non-identity with synthetic pyroglu-His-Pro-NH2 (TRH). Brain Research 163:101–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Foundation for Medical Research FUNGO (nr 13-35-33)

The authors wish to thank Prof. J. Ariëns Kappers and the members of the project group “Neuroendocrinology” for their suggestions and critical remarks, B. Fisser for his skilful assistance, and Miss J. Sels for typing the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pévet, P., Ebels, I., Swaab, D.F. et al. Presence of AVT-, α-MSH-, LHRH- and somatostatin-like compounds in the rat pineal gland and their relationship with the UMO5R pineal fraction. Cell Tissue Res. 206, 341–353 (1980). https://doi.org/10.1007/BF00237964

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237964

Key words

Navigation