Skip to main content
Log in

DNA polymerase III holoenzyme of Escherichia coli: Components and function of a true replicative complex

  • Review
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The DNA polymerase III holoenzyme is a complex, multisubunit enzyme that is responsible for the synthesis of most of the Escherichia coli chromosome. Through studies of the structure, function and regulation of this enzyme over the past decade, considerable progress has been made in the understanding of the features of a true replicative complex. The holoenzyme contains at least seven different subunits. Three of these, α, ε and θ, compose the catalytic core. Apparently α is the catalytic subunit and the product of the dnaE gene. Epsilon, encoded by dnaQ (mutD), is responsible for the proofreading 3′→5′ activity of the polymerase. The function of the B subunit remains to be established. The auxiliary subunits, β, γ and δ, encoded by dnaN, dnaZ and dnaX, respectively, are required for the functioning of the polymerase on natural chromosomes. All of the proteins participate in increasing the processivity of the polymerase and in the ATP-dependent formation of an initiation complex. Tau causes the polymerase to dimerize, perhaps forming a structure that can coordinate leading and lagging strand synthesis at the replication fork. This dimeric complex may be asymmetric with properties consistent with the distinct requirements for leading and lagging strand synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kornberg A: DNA Replication. WH Freeman and Co, San Francisco, 1980.

    Google Scholar 

  2. Kornberg A: DNA Synthesis, 1982 Supplement. WH Freeman and Co, San Francisco, 1982.

    Google Scholar 

  3. Wickner S: DNA replication proteins in E coli. Ann Rev Biochem 47:1163–1191, 1978.

    Google Scholar 

  4. McHenry C, Kornberg A: DNA polymerase III holoenzyme. In: Boyer P (ed), The Enzymes, Vol., XIV, pt A. Academic Press, New York, pp 39–50, 1981.

    Google Scholar 

  5. Nossal N: Prokaryotic DNA replication systems. Ann Rev Biochem 52:581–615, 1983.

    Google Scholar 

  6. Marians K: Enzymology of DNA replication in prokaryotes. CRC Crit Rev Biochem (in press).

  7. Wickner W, Schekman R, Geider K, Kornberg A: A new form of DNA polymerase III and a copolymerase replicate in a long single-stranded primer-template. Proc Natl Acad Sci USA 70:1764–1767, 1973.

    Google Scholar 

  8. McHenry C, Kornberg A: DNA polymerase III holoenzyme of Escherichia coli purification and resolution into subunits. J Biol Chem 252:6478–6484, 1977.

    Google Scholar 

  9. Wickner W, Kornberg A: A holoenzyme form of DNA polymerase III: isolation and properties. J Biol Chem 249:6244–6249, 1974.

    Google Scholar 

  10. Hurwitz J, Wickner S: Involvement of 2 protein factors and ATP in in vitro DNA synthesis catalyzed by DNA polymerase III of Escherichia coli. Proc Natl Acad Sci USA 71:6–10, 1974.

    Google Scholar 

  11. Schekman R, Wickner W, Westergaard O, Brutlag D, Geider K, Bertsch LL, Kornberg A: Initiation of DNA synthesis of ϕX-174 replicative form requires RNA synthesis resistant to rifampicin. Proc Natl Acad Sci USA 69: 2691–2695, 1972.

    Google Scholar 

  12. Shlomai J, Polder L, Arai KI, Kornberg A: Replication of phage ϕX-174 DNA with purified enzymes. Conversion of viral DNA to a supercoiled biologically active duplex. J Biol Chem 256:5233–5238, 1981.

    Google Scholar 

  13. Lanka E, Scherzinger E, Günther E, Schuster H: Proc Natl Acad Sci USA 76:3632–3636, 1979.

    Google Scholar 

  14. Weld M, Mallory J, Roberts J, LeBowitz J, McMacken R: λ DNA replication in vitro with purified λ replication proteins. Proc Natl Acad Sci USA 79:6176–6180, 1982.

    Google Scholar 

  15. Staudenbauer W: Replication of small plasmids in extracts of E. coli. Mol Gen Genet 145:273–280, 1976.

    Google Scholar 

  16. McHenry C, Crow W: DNA Polymerase III of Escherichia coli. Purification and identification of subunits. J Biol Chem 254:1748–1753, 1979.

    Google Scholar 

  17. McHenry CS: Purification and Characterization of DNA Polymerase III′. Identification of τ as a subunit of the DNA polymerase III holoenzyme. J Biol Chem 257:2657–2663, 1982.

    Google Scholar 

  18. Kornberg T, Gefter ML: Purification and DNA synthesis in cell-free extracts. Properties of DNA polymerase II. Proc Natl Acad Sci USA 68:761–764, 1971.

    Google Scholar 

  19. Kornberg R, Gefter ML: DNA Synthesis in cell-free extracts. Purification and catalytic properties of DNA polymerase III. J Biol Chem 247:5369–5375, 1972.

    Google Scholar 

  20. Gefter ML, Hirota Y, Kornberg T, Wechsler JA, Barnoux C: Analysis of DNA polymerases II and III in mutants of Escherichia coli thermosensitive for DNA synthesis. Proc Natl Acad Sci USA 68:3150–3153, 1971.

    Google Scholar 

  21. Livingston DM, Hinkle DC, Richardson CC: DNA polymerase III of Escherichia coli. Purification and properties. J Biol Chem 250:461–469, 1975.

    Google Scholar 

  22. Otto B, Bonhoeffer F, Schaller H: Purification and properties of DNA polymerase III. Eur J Biochem 34:440–447, 1973.

    Google Scholar 

  23. Spanos A, Sedgwick S, Yarranton G, Hübscher U, Banks G: Detection of the catalytic activities of DNA polymerases and their associated exonucleases following SDS-polyacrylamide gel electrophoresis. Nucl Acids Res 9:1825–1839, 1981.

    Google Scholar 

  24. Livingston DM, Richardson CC: DNA Polymerase III of Escherichia coli. Characterization of associated exonuclease activities. J Biol Chem 250:470–478, 1975.

    Google Scholar 

  25. Fersht AR, Knill-Jones JW: Contribution of 3′–5′ Exonuclease activity of DNA polymerase III holoenzyme from Escherichia coli to specificity. J Mol Biol 165:669–682, 1983.

    Google Scholar 

  26. Kodaira M, Biswas SB, Kornberg A: The dnaX gene encodes the DNA polymerase III holoenzyme τ subunit precursor of the γ subunit the dnaZ gene product. Mol Gen Genet 192:80–86, 1983.

    Google Scholar 

  27. Mullin DA, Woldringh CL, Henson JM, Walker JR: Cloning of the Escherichia coli dnaZX region and identification of its products. Mol Gen Genet 192:73–79, 1983.

    Google Scholar 

  28. Fay PJ, Johanson KO, McHenry CS, Bambara R: Size classes of products synthesized processively by 2 subassemblies of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 257:5692–5699, 1982.

    Google Scholar 

  29. Meyer R, Brown C, Rein D: A new DNA dependent ATPase from Escherichia coli: purification and characterization of ATPase IV. J Biol Chem 259:5093–5099, 1984.

    Google Scholar 

  30. Moses RE: The isolation and properties of DNA polymerase II from Escherichia coli. In: Grossman L, Moldave K (eds), Methods in Enzymology. Nucleic acids and protein synthesis, Part E. Academic Press, New York, 1974.

    Google Scholar 

  31. Helfman WB, Hendler SS, Smith DW: Escherichia coli DNA polymerases II and III activation by magnesium or by manganous ions. Biochim Biophys Acta 447:175–187, 1976.

    CAS  PubMed  Google Scholar 

  32. Wickner S: DNA or RNA priming of bacteriophage G4 DNA synthesis by Escherichia coli dnaG protein. Proc Natl Acad Sci USA 74:2815–2819, 1977.

    Google Scholar 

  33. Fay PJ, Johanson KO, McHenry CS, Bambara RA: Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holeenzyme of Escherichia coli. J Biol Chem 256:976–983, 1981.

    Google Scholar 

  34. La Duca RJ, Fay PJ, Chuang C, McHenry CS, Bambara RA: Site specific pausing of DNA synthesis catalyzed by 4 forms of Escherichia coli DNA polymerase III. Biochemistry 22:5177–5188, 1983.

    Google Scholar 

  35. Crute JJ, LaDuca RJ, Johanson KO, McHenry CS, Bambara RA: Excess β subunit can bypass the ATP requirement for highly processive synthesis by the Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 258:11344–11349, 1983.

    Google Scholar 

  36. Chandler M, Bird RE, Caro L: The replication time of the Escherichia coli K-12 chromosome as a function of cell doubling time. J Mol Biol 94:127–132, 1975.

    Google Scholar 

  37. Johanson KO, McHenry CS: The β subunit of the DNA polymerase III holoenzyme becomes inaccessible to antibody after formation of an initiation complex with primed DNA. J Biol Chem 257:12310–12315, 1982.

    Google Scholar 

  38. Kaguni LS, Clayton DA: Template directed pausing in in vitro DNA synthesis by DNA polymerase a from drosophila melanogasterembryos. Proc Natl Acad Sci USA 79:983–987. 1982.

    Google Scholar 

  39. Gosule LC, Schellman JA: DNA condensation with polyamines. Spectroscopic studies. J Mol Biol 121:311–326, 1978.

    Google Scholar 

  40. Widom J, Baldwin RL: Cation induced toroidal condensation of DNA. Studies with hexamine cobalt III. J Mol Biol 144:431–454, 1980.

    Google Scholar 

  41. Bäumel I, Meyer TF, Geider K: Functional aspects of Escherichia coli rep helicase in unwinding and replication of DNA. Eur J Biochem 138:247–252, 1984.

    Google Scholar 

  42. Wickner W, Kornberg A: DNA polymerase III star requires ATP to start synthesis on a primed DNA. Proc Natl Acad Sci USA 70:3679–3683, 1973.

    Google Scholar 

  43. Wickner S: Mechanism of DNA elongation catalyzed by Escherichia coli DNA polymerase III, dnaZ protein, DNA elongation factor I and factor III. Proc Mad Acad Sci USA 73:3511–3515, 1976.

    Google Scholar 

  44. Johanson KO, McHenry CS: Purification and characterization of the β subunit of the DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 255:10984–10990, 1980.

    Google Scholar 

  45. Burgers PMJ, Kornberg A: ATP activation of DNA polymerase III holoenzyme from Escherichia coli. Initiation complex stoichiometry and reactivity. J Biol Chem 257: 11474–11478, 1982.

    Google Scholar 

  46. Burgers PMJ, Kornberg A: ATP activation of DNA polymerase III holoenzyme of Escherichia coli. ATP dependent formation of an initiation complex with a primed template. J Biol Chem 257:11468–11473, 1982.

    Google Scholar 

  47. Johanson K, McHenry C: Adenosine 5′-0-(3-thiotriphosphate) can support the formation of an initiation complex between the DNA polymerase III holoenzyme and primed DNA. J Biol Chem 259:4589–4595, 1984.

    Google Scholar 

  48. Burgers PMJ, Kornberg A: Cycling of Escherichia coli DNA polymerase III holoenzyme in replication. J Biol Chem 258: 7669–7675, 1983.

    Google Scholar 

  49. Johanson K, McHenry C: Role of the β subunit of the Escherichia coli DNA polymerase III holoenzyme in the initiation of DNA elongation. In: Ray D (ed), The Initiation of DNA Replication. Academic Press, New York, 1981, pp 425–436.

    Google Scholar 

  50. Sinha NK, Morris CF, Alberts BM: Efficient in vitro replication of double-stranded DNA templates by a purified T4 bacteriophage replication system. J Biol Chem 255: 4290–4303, 1980.

    Google Scholar 

  51. Ottinger H, Hübscher U: Mammalian DNA polymerase a holoenzyme with possible functions at leading and lagging strand of the replication fork. Proc Natl Acad Sci USA 81: 3993–3997, 1984.

    Google Scholar 

  52. Fisher PA, Chen JT, Korn D: Enzymological characterization of KB cell DNA polymerase α. Regulation of template binding by nucleic acid base composition. J Biol Chem 256:133–141, 1981.

    Google Scholar 

  53. Fisher PA, Korn D: Enzymological characterization of KB cell DNA polymerase α. Specificity of the protein nucleic acid interaction. J Biol Chem 254:11033–11039, 1979.

    Google Scholar 

  54. McHenry C, Johanson K: DNA polymerase III holoenzyme of Escherichia coli: an asymmetric dimeric complex containing distinguishable leading and lagging strand polymerases. In: Hubscher U, Spadari S (eds), Proteins Involved in DNA Replication. Plenum Press, New York, 1984.

    Google Scholar 

  55. Denhardt DT, Dressler DH, Hathaway A: The abortive replication of ϕX174 DNA in a recombination-deficient mutant of Escherichia coli. Proc Natl Acad Sci USA 57:813–820, 1967.

    Google Scholar 

  56. Scott JF, Kornberg A: Purification of the rep protein of Escherichia coli. An ATPase which separates duplex DNA strands in advance of replication. J Biol Chem 253: 3292–3297, 1978.

    Google Scholar 

  57. Kornberg A, Scott JF, Bertsch LL: ATP utilization of rep protein in the catalytic separation of DNA strands at a replicating fork. J Biol Chem 253:3298–3304, 1978.

    Google Scholar 

  58. Kuhn B, Abdel-Monem M, Krell H, Hoffman-Berling H: Evidence for 2 mechanisms for DNA unwinding catalyzed by DNA helicases. J Biol Chem 254:11343–11350, 1979.

    Google Scholar 

  59. Kuhn B, Abdel-Monem M: DNA synthesis at a fork in the presence of DNA helicases. Eur J Biochem 125:63–68, 1982.

    Google Scholar 

  60. Walker JR, Ramsey JA, Haldenwang WG: Interaction of the Escherichia coli dnaA initiation protein with the dnaZ polymerization protein in vivo. Proc Natl Acad Sci USA 79: 3340–3344, 1982.

    Google Scholar 

  61. McMacken R, Ueda K, Kornberg A: Migration of Escherichia coli dnaB protein on the template DNA strand as a mechanism in initiating DNA replication. Proc Natl Acad Sci USA 74:4190–4194, 1977.

    Google Scholar 

  62. Arai K, Kornberg A: Unique primed start of phage ϕX174 DNA replication and mobility of primosome in the direction opposite chain synthesis. Proc Natl Acad Sci USA 78:69–73, 1981.

    Google Scholar 

  63. Arai KI, Low R, Kobori J, Shlomai J, Kornberg A: Mechanism of dnaB protein action. Association of dnaB protein n′ and other pre-priming proteins in the primosome of DNA replication. J Biol Chem 256:5273–5280, 1981.

    Google Scholar 

  64. Stayton M, Kornberg A: Complexes of Escherichia coli primase with the replication origin of G4 phage DNA. J Biol Chem 258:13205–13212, 1983.

    Google Scholar 

  65. Welch MM, McHenry CS: Cloning and identification of the product of the dnaE gene of Escherichia coli. J Bacteriol 152:351–356, 1982.

    Google Scholar 

  66. Shepard D, Oberfelder R, Welch M, McHenry C: Determination of the precise location and orientation of the Escherichia coli dnaE Gene. J Bacteriol 158:455–459, 1984.

    Google Scholar 

  67. Sakakibara Y, Mizukami T: A temperature sensitive Escherichia coli mutant defective in DNA replication dnaN a new gene adjacent to the dnaA gene. Mol Gen Genet 178:541–554, 1980.

    Google Scholar 

  68. Burgers PMJ, Kornberg A, Sakakibara Y: The dnaN gene codes for the β subunit of DNA polymerase III holoenzyme of Escherichia coli. Proc Natl Acad Sci USA 78:5391–5395, 1981.

    Google Scholar 

  69. Sakakibara Y, Tsukano H, Sako T: Organization and transcription of the dnaA and dnaN genes of Escherichia coli. Gene 13:47–56, 1981.

    Google Scholar 

  70. Ohmori H, Kimura M, Nagata T, Sakakibara Y: Structural analysis of the dnaA and dnaN genes of Escherichia coli. Gene 28:159–170, 1984.

    Google Scholar 

  71. Johanson K, Haynes T, McHenry C: Chemical characterization and large scale purification of the β subunit of the DNA polymerase III holoenzyme from an overproducing strain (in preparation).

  72. Kuwabara N, Uchida H: Functional cooperation of the dnaE and dnaN gene products in Escherichia coli. Proc Natl Acad Sci USA 78:5764–5767, 1981.

    Google Scholar 

  73. Niwa O, Bryan SK, Moses RE: Replication at restrictive temperatures in Escherichia coli containing a polCts Mutation. Proc Natl Acad Sci USA 76:5572–5576, 1979.

    Google Scholar 

  74. Filip CC, Allen JS, Gustafson RA, Allen RG, Walker JR: Bacterial cell division regulation. Characterization of the dnaZ locus of Escherichia coli. J Bacteriol 119:443–449, 1974.

    Google Scholar 

  75. Wickner S, Hurwitz J: Involvement of Escherichia coli dnaZ gene product in DNA elongation in vitro. Proc Natl Acad Sci USA 73:1053–1057, 1976.

    Google Scholar 

  76. Hübscher U, Kornberg A: The dnaZ protein is the γ subunit of DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 255:11698–11703, 1980.

    Google Scholar 

  77. Rowen L, Kobori JA, Scherer S: Cloning of bacterial DNA replication genes in bacteriophage λ. Mol Gen Genet 187:501–509, 1982.

    Google Scholar 

  78. Hübscher U, Kornberg A: The δ subunit of Escherichia coli DNA polymerase III holoenzyme is the dnaX gene product. Proc Natl Acad Sci USA 76:6284–6288, 1979.

    Google Scholar 

  79. McHenry CS: Multiple forms of DNA polymerase III of Escherichia coli. Purification and identification of subunits. J Supramol Struct 9 (Suppl 4):369, 1980.

    Google Scholar 

  80. Henson JM, Chu H, Irwin CA, Walker JR: Isolation and characterization of dnaX and dnaY temperature sensitive mutants of Escherichia coli. Genetics 92:1041–1060, 1979.

    Google Scholar 

  81. Degnen GE, Cox EC: Conditional mutator gene in Escherichia coli: isolation, mapping and effector studies. J Bacteriol 117:477–487, 1974.

    Google Scholar 

  82. Horiuchi T, Maki H, Sekiguchi M: A new conditional lethal mutator dnaQ49 in Escherichia coli K-12. Mol Gen Genet 163:277–284, 1978.

    Google Scholar 

  83. Di Francesco RA, Hardy MR, Bessman MJ: Is mutD a subunit of pol III. Fed Proc 40:1763, 1981.

    Google Scholar 

  84. Scheuermann R, Tam S, Burgers PMJ, Lu C, Echols H: Identification of the ε subunit of Escherichia coli DNA polymerase III holoenzyme as the dnaQ gene product. A fidelity subunit for DNA replication. Proc Natl Acad Sci USA 80:7085–7089, 1983.

    Google Scholar 

  85. Echols H, Lu C, Burgers PMJ: Mutator strains of Escherichia coli mutD and dnaQ with defective exonucleolytic editing by DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 80:2189–2192, 1983.

    Google Scholar 

  86. Di Francesco R, Bhatnager S, Brown A, Bessman M: The interaction of the DNA polymerase III and the product of the Escherichia coli mutator gene, mutD. J Biol Chem 259:5567–5573, 1984.

    Google Scholar 

  87. Scheuermann R, Echols H: A separate editing exonuclease for DNA replication: The ε subunit of Escherichia coli DNA polymerase III holoenzyme ε is the 3′ exonuclease. Proc Natl Acad Sci USA (in press).

  88. Wu Y, Franden M, Hawker J, McHenry C: Monoclonal antibodies specific for the α subunit of the Escherichia coli DNA polymerase III holoenzyme. J Biol Chem 259:12117–12122, 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McHenry, C.S. DNA polymerase III holoenzyme of Escherichia coli: Components and function of a true replicative complex. Mol Cell Biochem 66, 71–85 (1985). https://doi.org/10.1007/BF00231826

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231826

Keywords

Navigation