Skip to main content

Eukaryotic Replicative DNA Polymerases

  • Chapter
  • First Online:
Nucleic Acid Polymerases

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 30))

Abstract

DNA replication is a dynamic process that requires the precise coordination of numerous cellular proteins. At the core of replication in eukaryotic cells are three DNA polymerases, Pol α, Pol δ, and Pol ε, which function cooperatively to ensure efficient and high-fidelity genome replication. These enzymes are members of the B family of DNA polymerases, characterized by conserved amino acid motifs within the polymerase active sites. Pol α is a DNA polymerase of moderate fidelity that lacks 3′→5′ exonuclease activity, while Pols δ and ε are processive, high-fidelity polymerases with functional 3′→5′ exonuclease activities. Each polymerase exists as a holoenzyme complex of a large polymerase catalytic subunit and several smaller subunits. The Pol α holoenzyme possesses primase activity, which is required for de novo synthesis of RNA–DNA primers at replication origins and at each new Okazaki fragment. In one model of eukaryotic DNA replication, Pol ε functions in leading strand DNA synthesis, while Pol δ functions primarily in lagging strand synthesis. This chapter discusses the biochemical properties of eukaryotic replicative polymerases and how biochemical properties shape their functional roles in replication initiation, replication fork elongation, and the checkpoint responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulovic AL, Hile SE, Kunkel TA, Eckert KA (2011) The in vitro fidelity of yeast DNA polymerase delta and polymerase epsilon holoenzymes during dinucleotide microsatellite DNA synthesis. DNA Repair 10(5):497–505. doi: 10.1016/j.dnarep.2011.02.003

    PubMed  CAS  Google Scholar 

  • Acharya N, Klassen R, Johnson RE, Prakash L, Prakash S (2011) PCNA binding domains in all three subunits of yeast DNA polymerase delta modulate its function in DNA replication. Proc Natl Acad Sci USA 108(44):17927–17932. doi:10.1073/pnas.1109981108

    PubMed  CAS  Google Scholar 

  • Agarkar VB, Babayeva ND, Pavlov YI, Tahirov TH (2011) Crystal structure of the C-terminal domain of human DNA primase large subunit: implications for the mechanism of the primase-polymerase alpha switch. Cell Cycle 10(6):926–931. doi: 4161/cc.10.6.15010

    PubMed  CAS  Google Scholar 

  • Aksenova A, Volkov K, Maceluch J, Pursell ZF, Rogozin IB, Kunkel TA, Pavlov YI, Johansson E (2010) Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase epsilon. PLoS Genet 6(11):e1001209. doi:10.1371/journal.pgen.1001209

    PubMed  Google Scholar 

  • Albertson TM, Ogawa M, Bugni JM, Hays LE, Chen Y, Wang Y, Treuting PM, Heddle JA, Goldsby RE, Preston BD (2009) DNA polymerase epsilon and delta proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci USA 106(40):17101–17104. doi:10.1073/pnas.0907147106

    PubMed  CAS  Google Scholar 

  • Araki H, Hamatake RK, Johnston LH, Sugino A (1991) DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88(11):4601–4605

    PubMed  CAS  Google Scholar 

  • Araki H, Ropp PA, Johnson AL, Johnston LH, Morrison A, Sugino A (1992) DNA polymerase II, the probable homolog of mammalian DNA polymerase epsilon, replicates chromosomal DNA in the yeast Saccharomyces cerevisiae. EMBO J 11(2):733–740

    PubMed  CAS  Google Scholar 

  • Araki H (2010) Cyclin-dependent kinase-dependent initiation of chromosomal DNA replication. Curr Opin Cell Biol 22(6):766–771. doi: 10.1016/jceb.2010.07.015

    PubMed  CAS  Google Scholar 

  • Arezi B, Kirk BW, Copeland WC, Kuchta RD (1999) Interactions of DNA with human DNA primase monitored with photoactivatable cross-linking agents: implications for the role of the p58 subunit. Biochemistry 38(39):12899–12907. doi:10.1021/bi9908991

    PubMed  CAS  Google Scholar 

  • Asturias FJ, Cheung IK, Sabouri N, Chilkova O, Wepplo D, Johansson E (2006) Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy. Nat Struct Mol Biol 13(1):35–43. doi:10.1038/nsmb1040, nsmb1040 [pii]

    PubMed  CAS  Google Scholar 

  • Baranovskiy AG, Lada AG, Siebler HM, Zhang Y, Pavlov YI, Tahirov TH (2012) DNA polymerase delta and zeta switch by sharing accessory subunits of DNA polymerase delta. J Biol Chem 287(21):17281–17287. doi:10.1074/jbc.M112.351122

    PubMed  CAS  Google Scholar 

  • Bermudez VP, Farina A, Raghavan V, Tappin I, Hurwitz J (2011) Studies on human DNA polymerase epsilon and GINS complex and their role in DNA replication. J Biol Chem 286(33):28963–28977. doi:10.1074/jbc.M111.256289

    PubMed  CAS  Google Scholar 

  • Boulet A, Simon M, Faye G, Bauer GA, Burgers PM (1989) Structure and function of the Saccharomyces cerevisiae CDC2 gene encoding the large subunit of DNA polymerase III. EMBO J 8(6):1849–1854

    PubMed  CAS  Google Scholar 

  • Braun KA, Lao Y, He Z, Ingles CJ, Wold MS (1997) Role of protein–protein interactions in the function of replication protein A (RPA): RPA modulates the activity of DNA polymerase alpha by multiple mechanisms. Biochemistry 36(28):8443–8454. doi:10.1021/bi970473r

    PubMed  CAS  Google Scholar 

  • Bravo R, Frank R, Blundell PA, Macdonald-Bravo H (1987) Cyclin/PCNA is the auxiliary protein of DNA polymerase-delta. Nature 326(6112):515–517. doi:10.1038/326515a0

    PubMed  CAS  Google Scholar 

  • Budd M, Campbell JL (1987) Temperature-sensitive mutations in the yeast DNA polymerase I gene. Proc Natl Acad Sci USA 84(9):2838–2842

    PubMed  CAS  Google Scholar 

  • Budd ME, Campbell JL (1993) DNA polymerases delta and epsilon are required for chromosomal replication in Saccharomyces cerevisiae. Mol Cell Biol 13(1):496–505. doi:10.1128/mcb.13.1.496

    PubMed  CAS  Google Scholar 

  • Burgers PMJ (2009) Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem 284(7):4041–4045. doi:10.1074/jbc.R800062200

    PubMed  CAS  Google Scholar 

  • Burgers PM, Bambara RA, Campbell JL, Chang LM, Downey KM, Hubscher U, Lee MY, Linn SM, So AG, Spadari S (1990) Revised nomenclature for eukaryotic DNA polymerases. Eur J Biochem 191(3):617–618

    PubMed  CAS  Google Scholar 

  • Byrnes JJ, Downey KM, Black VL, So AG (1976) A new mammalian DNA polymerase with 3′ to 5′ exonuclease activity: DNA polymerase delta. Biochemistry 15(13):2817–2823. doi:10.1021/bi00658a018

    PubMed  CAS  Google Scholar 

  • Chilkova O, Stenlund P, Isoz I, Stith CM, Grabowski P, Lundström E-B, Burgers PM, Johansson E (2007) The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA. Nucleic Acids Res 35(19):6588–6597. doi:10.1093/nar/gkm741

    PubMed  CAS  Google Scholar 

  • Collins KL, Russo AA, Tseng BY, Kelly TJ (1993) The role of the 70 kDa subunit of human DNA polymerase alpha in DNA replication. EMBO J 12(12):4555–4566

    PubMed  CAS  Google Scholar 

  • Copeland WC, Tan X (1995) Active site mapping of the catalytic mouse primase subunit by alanine scanning mutagenesis. J Biol Chem 270(8):3905–3913

    PubMed  CAS  Google Scholar 

  • Copeland WC, Wang TS (1993) Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication. J Biol Chem 268(35):26179–26189

    PubMed  CAS  Google Scholar 

  • De Falco M, Ferrari E, De Felice M, Rossi M, Hubscher U, Pisani FM (2007) The human GINS complex binds to and specifically stimulates human DNA polymerase alpha-primase. EMBO Rep 8(1):99–103. doi:10.1038/sj.embor.7400870, 7400870 [pii]

    PubMed  Google Scholar 

  • Dieckman LM, Johnson RE, Prakash S, Washington MT (2010) Pre-steady state kinetic studies of the fidelity of nucleotide incorporation by yeast DNA polymerase delta. Biochemistry 49(34):7344–7350. doi:10.1021/bi100556m

    PubMed  CAS  Google Scholar 

  • Dua R, Levy DL, Campbell JL (1998) Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase epsilon in DNA replication and the S/M checkpoint pathway. J Biol Chem 273(45):30046–30055. doi:10.1074/jbc.273.45.30046

    PubMed  CAS  Google Scholar 

  • Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol epsilon and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 274(32):22283–22288. doi:10.1074/jbc.274.32.22283

    PubMed  CAS  Google Scholar 

  • Dua R, Levy DL, Li CM, Snow PM, Campbell JL (2002) In vivo reconstitution of Saccharomyces cerevisiae DNA polymerase epsilon in insect cells. J Biol Chem 277(10):7889–7896. doi:10.1074/jbc.M108546200

    PubMed  CAS  Google Scholar 

  • Ducoux M, Urbach S, Baldacci G, Hubscher U, Koundrioukoff S, Christensen J, Hughes P (2001) Mediation of proliferating cell nuclear antigen (PCNA)-dependent DNA replication through a conserved p21(Cip1)-like PCNA-binding motif present in the third subunit of human DNA polymerase delta. J Biol Chem 276(52):49258–49266. doi:10.1074/jbc.M106990200, M106990200 [pii]

    PubMed  CAS  Google Scholar 

  • Eckert KA, Kunkel TA (1993) Fidelity of DNA synthesis catalyzed by human DNA polymerase alpha and HIV-1 reverse transcriptase: effect of reaction pH. Nucleic Acids Res 21(22):5212–5220

    PubMed  CAS  Google Scholar 

  • Eckert KA, Hile SE, Vargo PL (1997) Development and use of an in vitro HSV-Tk forward mutation assay to study eukaryotic DNA polymerase processing of DNA alkyl lesions. Nucleic Acids Res 25(7):1450–1457. doi:10.1093/nar/25.7.1450

    PubMed  CAS  Google Scholar 

  • Feng W, D’Urso G (2001) Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon Are viable but require the DNA damage checkpoint control. Mol Cell Biol 21(14):4495–4504. doi:10.1128/mcb.21.14.4495-4504.2001

    PubMed  CAS  Google Scholar 

  • Ferrari M, Lucchini G, Plevani P, Foiani M (1996) Phosphorylation of the DNA polymerase alpha-primase B subunit is dependent on its association with the p180 polypeptide. J Biol Chem 271(15):8661–8666

    PubMed  CAS  Google Scholar 

  • Fien K, Cho YS, Lee JK, Raychaudhuri S, Tappin I, Hurwitz J (2004) Primer utilization by DNA polymerase alpha-primase is influenced by its interaction with Mcm10p. J Biol Chem 279(16):16144–16153. doi:10.1074/jbc.M400142200, M400142200 [pii]

    PubMed  CAS  Google Scholar 

  • Foiani M, Santocanale C, Plevani P, Lucchini G (1989) A single essential gene, PRI2, encodes the large subunit of DNA primase in Saccharomyces cerevisiae. Mol Cell Biol 9(7):3081–3087. doi:10.1128/mcb.9.7.3081

    PubMed  CAS  Google Scholar 

  • Foiani M, Marini F, Gamba D, Lucchini G, Plevani P (1994) The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication. Mol Cell Biol 14(2):923–933

    PubMed  CAS  Google Scholar 

  • Fortune JM, Pavlov YI, Welch CM, Johansson E, Burgers PMJ, Kunkel TA (2005) Saccharomyces cerevisiae DNA Polymerase delta. J Biol Chem 280(33):29980–29987. doi:10.1074/jbc.M505236200

    PubMed  CAS  Google Scholar 

  • Fortune JM, Stith CM, Kissling GE, Burgers PMJ, Kunkel TA (2006) RPA and PCNA suppress formation of large deletion errors by yeast DNA polymerase delta. Nucleic Acids Res 34(16):4335–4341. doi:10.1093/nar/gkl403

    PubMed  CAS  Google Scholar 

  • Francesconi S, Park H, Wang TS-F (1993) Fission yeast with DNA polymerase delta temperature-sensitive alleles exhibits cell division cycle phenotype. Nucleic Acids Res 21(16):3821–3828. doi:10.1093/nar/21.16.3821

    PubMed  CAS  Google Scholar 

  • Fry M, Loeb LA (1992) A DNA polymerase alpha pause site is a hot spot for nucleotide misinsertion. Proc Natl Acad Sci USA 89(2):763–767

    PubMed  CAS  Google Scholar 

  • Fukui T, Yamauchi K, Muroya T, Akiyama M, Maki H, Sugino A, Waga S (2004) Distinct roles of DNA polymerases delta and epsilon at the replication fork in Xenopus egg extracts. Genes Cells 9(3):179–191. doi:10.1111/j.1356-9597.2004.00716.x

    PubMed  CAS  Google Scholar 

  • Gao Y, Zhou Y, Xie B, Zhang S, Rahmeh A, H-s H, Lee MYWT, Lee EYC (2008) Protein phosphatase-1 is targeted to DNA polymerase delta via an interaction with the p68 subunit. Biochemistry 47(43):11367–11376. doi:10.1021/bi801122t

    PubMed  CAS  Google Scholar 

  • Garg P, Stith CM, Sabouri N, Johansson E, Burgers PM (2004) Idling by DNA polymerase delta maintains a ligatable nick during lagging-strand DNA replication. Genes Dev 18(22):2764–2773. doi:10.1101/gad.1252304

    PubMed  CAS  Google Scholar 

  • Gerik KJ, Li X, Pautz A, Burgers PM (1998) Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 273(31):19747–19755

    PubMed  CAS  Google Scholar 

  • Goldsby RE, Hays LE, Chen X, Olmsted EA, Slayton WB, Spangrude GJ, Preston BD (2002) High incidence of epithelial cancers in mice deficient for DNA polymerase delta proofreading. Proc Natl Acad Sci USA 99(24):15560–15565. doi:10.1073/pnas.232340999

    PubMed  CAS  Google Scholar 

  • Griffiths DJF, Liu VF, Nurse P, Wang TSF (2001) Role of fission yeast primase catalytic subunit in the replication checkpoint. Mol Biol Cell 12(1):115–128. doi: 10.1091/mbc.12.1.115

    PubMed  CAS  Google Scholar 

  • Gutiérrez PJA, Wang TS-F (2003) Genomic instability induced by mutations in Saccharomyces cerevisiae POL1. Genetics 165(1):65–81

    PubMed  Google Scholar 

  • Handa T, Kanke M, Takahashi TS, Nakagawa T, Masukata H (2012) DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast. Mol Biol Cell 23(16):3240–3253. doi:10.1091/mbc.E12-05-0339

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Shimizu K, Nakashima N, Sugino A (2003) Fidelity of DNA polymerase delta holoenzyme from Saccharomyces cerevisiae: the sliding clamp proliferating cell nuclear antigen decreases its fidelity. Biochemistry 42(48):14207–14213. doi:10.1021/bi0348359

    PubMed  CAS  Google Scholar 

  • Hile SE, Eckert KA (2004) Positive correlation between DNA polymerase alpha-primase pausing and mutagenesis within polypyrimidine/polypurine microsatellite sequences. J Mol Biol 335(3):745–759. doi: 10.1016/j.jmb.2003.10.075

    PubMed  CAS  Google Scholar 

  • Hile SE, Wang X, Lee MYWT, Eckert KA (2012) Beyond translesion synthesis: polymerase kappa fidelity as a potential determinant of microsatellite stability. Nucleic Acids Res 40(4):1636–1647. doi: 10.1093/nar/gkr889

    PubMed  CAS  Google Scholar 

  • Hiraga S, Hagihara-Hayashi A, Ohya T, Sugino A (2005) DNA polymerases alpha, delta, and epsilon localize and function together at replication forks in Saccharomyces cerevisiae. Genes Cells 10(4):297–309. doi:10.1111/j.1365-2443.2005.00843.x, GTC843 [pii]

    PubMed  CAS  Google Scholar 

  • Hohn KT, Grosse F (1987) Processivity of the DNA polymerase alpha-primase complex from calf thymus. Biochemistry 26(10):2870–2878. doi:10.1021/bi00384a031

    PubMed  CAS  Google Scholar 

  • Hu SZ, Wang TS, Korn D (1984) DNA primase from KB cells. Evidence for a novel model of primase catalysis by a highly purified primase/polymerase-alpha complex. J Biol Chem 259(4):2602–2609

    PubMed  CAS  Google Scholar 

  • Jain R, Hammel M, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structural insights into yeast DNA polymerase delta by small angle X-ray scattering. J Mol Biol 394(3):377–382. doi:10.1016/j.jmb.2009.09.066, S0022-2836(09)01216-9 [pii]

    PubMed  CAS  Google Scholar 

  • Jin YH, Ayyagari R, Resnick MA, Gordenin DA, Burgers PMJ (2003) Okazaki fragment maturation in yeast. J Biol Chem 278(3):1626–1633. doi:10.1074/jbc.M209803200

    PubMed  CAS  Google Scholar 

  • Johnson LM, Snyder M, Chang LMS, Davis RW, Campbell JL (1985) Isolation of the gene encoding yeast DNA polymerase I. Cell 43(1):369–377

    PubMed  CAS  Google Scholar 

  • Johnson RE, Prakash L, Prakash S (2012) Pol31 and Pol32 subunits of yeast DNA polymerase delta are also essential subunits of DNA polymerase zeta. Proc Natl Acad Sci USA 109(31):12455–12460. doi:10.1073/pnas.1206052109

    PubMed  CAS  Google Scholar 

  • Kaczmarek L, Miller MR, Hammond RA, Mercer WE (1986) A microinjected monoclonal antibody against human DNA polymerase-alpha inhibits DNA replication in human, hamster, and mouse cell lines. J Biol Chem 261(23):10802–10807

    PubMed  CAS  Google Scholar 

  • Kamath-Loeb AS, Shen J-C, Schmitt MW, Loeb LA (2012) The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase delta. J Biol Chem 287(15):12480–12490. doi:10.1074/jbc.M111.332577

    PubMed  CAS  Google Scholar 

  • Karthikeyan R, Vonarx EJ, Straffon AFL, Simon M, Gr F, Kunz BA (2000) Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. J Mol Biol 299(2):405–419. doi: 10.1006/jmbi.200.3744

    PubMed  CAS  Google Scholar 

  • Kesti T, Flick K, Keränen S, Syväoja JE, Wittenberg C (1999) DNA polymerase μ catalytic domains Are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3(5):679–685. doi: 10.1016/S1097-2765(00)80361-5

    PubMed  CAS  Google Scholar 

  • Kesti T, McDonald WH, Yates JR, Wittenberg C (2004) Cell cycle-dependent phosphorylation of the DNA polymerase epsilon subunit, Dpb2, by the Cdc28 cyclin-dependent protein kinase. J Biol Chem 279(14):14245–14255

    PubMed  CAS  Google Scholar 

  • Khare V, Eckert KA (2002) The proofreading 3′→5′ exonuclease activity of DNA polymerases: a kinetic barrier to translesion DNA synthesis. Mutat Res 510 (1–2):45–54. doi: 10.1016/S0027-5107(02)00251-8

    Google Scholar 

  • Kitani T, Yoda K, Okazaki T (1984) Discontinuous DNA replication of Drosophila melanogaster is primed by octaribonucleotide primer. Mol Cell Biol 4(8):1591–1596

    PubMed  CAS  Google Scholar 

  • Klinge S, Nunez-Ramirez R, Llorca O, Pellegrini L (2009) 3D architecture of DNA Pol alpha reveals the functional core of multi-subunit replicative polymerases. EMBO J 28(13):1978–1987. doi:10.1038/emboj.2009.150, emboj2009150 [pii]

    PubMed  CAS  Google Scholar 

  • Korona DA, LeCompte KG, Pursell ZF (2011) The high fidelity and unique error signature of human DNA polymerase epsilon. Nucleic Acids Res 39(5):1763–1773. doi:10.1093/nar/gkq1034

    PubMed  CAS  Google Scholar 

  • Kuchta RD, Reid B, Chang LM (1990) DNA primase. Processivity and the primase to polymerase alpha activity switch. J Biol Chem 265(27):16158–16165

    PubMed  CAS  Google Scholar 

  • Kunkel TA (1985) The mutational specificity of DNA polymerases-alpha and -gamma during in vitro DNA synthesis. J Biol Chem 260(23):12866–12874

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18(11):521–527. doi: 10.1016/j.tcb.2008.08.005

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Loeb LA (1981) Fidelity of mammalian DNA polymerases. Science 213(4509):765–767. doi:10.2307/1686608

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Sabatino RD, Bambara RA (1987) Exonucleolytic proofreading by calf thymus DNA polymerase delta. Proc Natl Acad Sci USA 84(14):4865–4869

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Hamatake RK, Motto-Fox J, Fitzgerald MP, Sugino A (1989) Fidelity of DNA polymerase I and the DNA polymerase I-DNA primase complex from Saccharomyces cerevisiae. Mol Cell Biol 9(10):4447–4458

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Roberts JD, Sugino A (1991) The fidelity of DNA synthesis by the catalytic subunit of yeast DNA polymerase alpha alone and with accessory proteins. Mutat Res 250:175–182

    PubMed  CAS  Google Scholar 

  • Larrea AA, Lujan SA, Nick McElhinny SA, Mieczkowski PA, Resnick MA, Gordenin DA, Kunkel TA (2010) Genome-wide model for the normal eukaryotic DNA replication fork. Proc Natl Acad Sci USA 107(41):17674–17679. doi:10.1073/pnas.1010178107, 1010178107 [pii]

    PubMed  CAS  Google Scholar 

  • Lee MYWT, Zhang S, Lin SHS, Chea J, Wang X, LeRoy C, Wong A, Zhang Z, Lee EYC (2012) Regulation of human DNA polymerase delta in the cellular responses to DNA damage. Environ Mol Mutagen 53(9):683–698. doi:10.1002/em.21743

    PubMed  CAS  Google Scholar 

  • Lemmens L, Urbach S, Prudent R, Cochet C, Baldacci G, Hughes P (2008) Phosphorylation of the C subunit (p66) of human DNA polymerase delta. Biochem Biophys Res Commun 367(2):264–270. doi:10.1016/j.bbrc.2007.12.083, S0006-291X(07)02692-7 [pii]

    PubMed  CAS  Google Scholar 

  • Li H, Xie B, Rahmeh A, Zhou Y, Lee MY (2006a) Direct interaction of p21 with p50, the small subunit of human DNA polymerase delta. Cell Cycle 5 (4):428–436

    Google Scholar 

  • Li H, Xie B, Zhou Y, Rahmeh A, Trusa S, Zhang S, Gao Y, Lee EYC, Lee MYWT (2006b) Functional roles of p12, the fourth subunit of human DNA polymerase delta. J Biol Chem 281(21):14748–14755. doi:10.1074/jbc.M600322200

    PubMed  CAS  Google Scholar 

  • Liu VF, Bhaumik D, Wang TS-F (1999) Mutator phenotype induced by aberrant replication. Mol Cell Biol 19(2):1126–1135

    PubMed  CAS  Google Scholar 

  • Longhese MP, Jovine L, Plevani P, Lucchini G (1993) Conditional mutations in the yeast DNA primase genes affect different aspects of DNA metabolism and interactions in the DNA polymerase alpha-primase complex. Genetics 133(2):183–191

    PubMed  CAS  Google Scholar 

  • Lucchini G, Francesconi S, Foiani M, Badaracco G, Plevani P (1987) Yeast DNA polymerase–DNA primase complex; cloning of PRI 1, a single essential gene related to DNA primase activity. EMBO J 6(3):737–742

    PubMed  CAS  Google Scholar 

  • MacNeill SA, Moreno S, Reynolds N, Nurse P, Fantes PA (1996) The fission yeast Cdc1 protein, a homologue of the small subunit of DNA polymerase delta, binds to Pol3 and Cdc27. EMBO J 15(17):4613–4628

    PubMed  CAS  Google Scholar 

  • Maga G, Stucki M, Spadari S, Hubscher U (2000) DNA polymerase switching: I. Replication factor C displaces DNA polymerase alpha prior to PCNA loading. J Mol Biol 295(4):791–801. doi: 10.1006/jmbi.1999.3394

    PubMed  CAS  Google Scholar 

  • Maga G, Frouin I, Spadari S, Hubscher U (2001) Replication protein A as a “fidelity clamp” for DNA polymerase alpha. J Biol Chem 276(21):18235–18242. doi:10.1074/jbc.M009599200

    PubMed  CAS  Google Scholar 

  • Marini F, Pellicioli A, Paciotti V, Lucchini G, Plevani P, Stern DF, Foiani M (1997) A role for DNA primase in coupling DNA replication to DNA damage response. EMBO J 16(3):639–650

    PubMed  CAS  Google Scholar 

  • Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M (2010) Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 79(1):89–130. doi:10.1146/annurev.biochem.052308.103205

    PubMed  CAS  Google Scholar 

  • McElhinny SAN, Stith CM, Burgers PMJ, Kunkel TA (2007) Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 282(4):2324–2332. doi:10.1074/jbc.M609591200

    Google Scholar 

  • Menezes MR, Sweasy JB (2012) Mouse models of DNA polymerases. Environ Mol Mutagen 53(9):645–665. doi:10.1002/em.21731

    PubMed  CAS  Google Scholar 

  • Michael WM, Ott R, Fanning E, Newport J (2000) Activation of the DNA replication checkpoint through RNA synthesis by primase. Science 289(5487):2133–2137. doi: 10.1126/science.289.5487.2133

    PubMed  CAS  Google Scholar 

  • Miller MR, Ulrich RG, Wang TS, Korn D (1985) Monoclonal antibodies against human DNA polymerase-alpha inhibit DNA replication in permeabilized human cells. J Biol Chem 260(1):134–138

    PubMed  CAS  Google Scholar 

  • Moldovan G-L, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129(4):665–679. doi: 10.1016/j.cell.2007.05.003

    PubMed  CAS  Google Scholar 

  • Morrison A, Sugino A (1994) The 3′→5′ exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol Gen Genet 242(3):289–296

    PubMed  CAS  Google Scholar 

  • Morrison A, Araki H, Clark AB, Hamatake RK, Sugino A (1990) A third essential DNA polymerase in S. Cerevisiae. Cell 62(6):1143–1151

    PubMed  CAS  Google Scholar 

  • Morrison A, Bell JB, Kunkel TA, Sugino A (1991) Eukaryotic DNA polymerase amino acid sequence required for 3′–5′ exonuclease activity. Proc Natl Acad Sci USA 88(21):9473–9477

    PubMed  CAS  Google Scholar 

  • Mossi R, Keller RC, Ferrari E, Hubscher U (2000) DNA polymerase switching: II. Replication factor C abrogates primer synthesis by DNA polymerase alpha at a critical length. J Mol Biol 295(4):803–814. doi: 10.1006/jmbi.1999.3395

    PubMed  CAS  Google Scholar 

  • Mozzherin DJ, McConnell M, Jasko MV, Krayevsky AA, Tan C-K, Downey KM, Fisher PA (1996) Proliferating cell nuclear antigen promotes misincorporation catalyzed by calf thymus DNA polymerase delta. J Biol Chem 271(49):31711–31717. doi:10.1074/jbc.271.49.31711

    PubMed  CAS  Google Scholar 

  • Murakami H, Okayama H (1995) A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374(6525):817–819. doi: 10.1038/374817a0

    PubMed  CAS  Google Scholar 

  • Muramatsu S, Hirai K, Tak Y-S, Kamimura Y, Araki H (2010) CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol Epsilon, and GINS in budding yeast. Genes Dev 24(6):602–612. doi:10.1101/gad.1883410

    PubMed  CAS  Google Scholar 

  • Muzi-Falconi M, Giannattasio M, Foiani M, Plevani P (2003) The DNA polymerase alpha-primase complex: multiple functions and interactions. ScientificWorldJournal 3:21–33. doi:10.1100/tsw.2003.05

    PubMed  CAS  Google Scholar 

  • Nasheuer HP, Grosse F (1988) DNA polymerase alpha-primase from calf thymus. Determination of the polypeptide responsible for primase activity. J Biol Chem 263(18):8981–8988

    PubMed  CAS  Google Scholar 

  • Nasheuer HP, Moore A, Wahl AF, Wang TS (1991) Cell cycle-dependent phosphorylation of human DNA polymerase alpha. J Biol Chem 266(12):7893–7903

    PubMed  CAS  Google Scholar 

  • Navas TA, Zhou Z, Elledge SJ (1995) DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80(1):29–39

    PubMed  CAS  Google Scholar 

  • Navas TA, Sanchez Y, Elledge SJ (1996) RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae. Genes Dev 10(20):2632–2643. doi:10.1101/gad.10.20.2632

    PubMed  CAS  Google Scholar 

  • Netz DJ, Stith CM, Stumpfig M, Kopf G, Vogel D, Genau HM, Stodola JL, Lill R, Burgers PM, Pierik AJ (2012) Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 8(1):125–132. doi:10.1038/nchembio.721, nchembio.721 [pii]

    CAS  Google Scholar 

  • Ng L, Tan CK, Downey KM, Fisher PA (1991) Enzymologic mechanism of calf thymus DNA polymerase delta. J Biol Chem 266(18):11699–11704

    PubMed  CAS  Google Scholar 

  • Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PMJ, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30(2):137–144. doi: 10.1016.j.mol.cell.2008.02.022

    PubMed  CAS  Google Scholar 

  • Nunez-Ramirez R, Klinge S, Sauguet L, Melero R, Recuero-Checa MA, Kilkenny M, Perera RL, Garcia-Alvarez B, Hall RJ, Nogales E, Pellegrini L, Llorca O (2011) Flexible tethering of primase and DNA Pol alpha in the eukaryotic primosome. Nucleic Acids Res 39(18):8187–8199. doi:10.1093/nar/gkr534, gkr534 [pii]

    PubMed  CAS  Google Scholar 

  • Pai CC, Garcia I, Wang SW, Cotterill S, MacNeill SA, Kearsey SE (2009) GINS inactivation phenotypes reveal Two pathways for chromatin association of replicative alpha and epsilon DNA polymerases in fission yeast. Mol Biol Cell 20(4):1213–1222. doi:10.1091/mbc.E08-04-0429

    PubMed  CAS  Google Scholar 

  • Pavlov YI, Shcherbakova PV (2010) DNA polymerases at the eukaryotic fork-20 years later. Mutat Res 685(1–2):45–53

    PubMed  CAS  Google Scholar 

  • Pavlov YI, Frahm C, McElhinny SAN, Niimi A, Suzuki M, Kunkel TA (2006a) Evidence that errors made by DNA polymerase alpha are corrected by DNA polymerase delta. Curr Biol 16(2):202–207

    PubMed  CAS  Google Scholar 

  • Pavlov YI, Shcherbakova PV, Rogozin IB, Kwang WJ (2006b) Roles of DNA polymerases in replication, repair, and recombination in eukaryotes. Int Rev Cytol 255:41–132. doi: 10.1016/S0074-7696(06)55002-8

    Google Scholar 

  • Perrino FW, Loeb LA (1989) Differential extension of 3′ mispairs is a major contribution to the high fidelity of calf thymus DNA polymerase-alpha. J Biol Chem 264(5):2898–2905

    PubMed  CAS  Google Scholar 

  • Plevani P, Foiani M, Valsasnini P, Badaracco G, Cheriathundam E, Chang LM (1985) Polypeptide structure of DNA primase from a yeast DNA polymerase-primase complex. J Biol Chem 260(11):7102–7107

    PubMed  CAS  Google Scholar 

  • Podust VN, Chang L-S, Ott R, Dianov GL, Fanning E (2002) Reconstitution of human DNA polymerase delta using recombinant baculoviruses: the p12 subunit potentiates DNA polymerizing activity of the four-subunit enzyme. J Biol Chem 277(6):3894–3901. doi: 10.1074.jbc.M109684200

    PubMed  CAS  Google Scholar 

  • Prelich G, Tan C-K, Kostura M, Mathews MB, So AG, Downey KM, Stillman B (1987) Functional identity of proliferating cell nuclear antigen and a DNA polymerase-[delta] auxiliary protein. Nature 326(6112):517–520

    PubMed  CAS  Google Scholar 

  • Prindle MJ, Loeb LA (2012) DNA polymerase delta in DNA replication and genome maintenance. Environ Mol Mutagen 53(9):666–682. doi:10.1002/em.21745

    PubMed  CAS  Google Scholar 

  • Puddu F, Piergiovanni G, Plevani P, Muzi-Falconi M (2011) Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase epsilon. PLoS Genet 7(3):e1002022. doi: 10.137/journal.pgen.1002022

  • Pursell ZF, Isoz I, Lundstrom E-B, Johansson E, Kunkel TA (2007a) Regulation of B family DNA polymerase fidelity by a conserved active site residue: characterization of M644W, M644L and M644F mutants of yeast DNA polymerase epsilon. Nucleic Acids Res 35(9):3076–3086. doi:10.1093/nar/gkm132

    PubMed  CAS  Google Scholar 

  • Pursell ZF, Isoz I, Lundstrom E-B, Johansson E, Kunkel TA (2007b) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317(5834):127–130. doi:10.1126/science.1144067

    PubMed  CAS  Google Scholar 

  • Pursell ZF and Kunkel TA (2008) Chapter 4 DNA polymerase epsilon: a polymerase of unusual size (and complexity). In: Progress in nucleic acid research and molecular biology, vol 82. Academic Press, London, UK; P. Michael Conn, Editor, pp 101–145. doi: 10.1016/S0079-6603(08)00004-4

    Google Scholar 

  • Rahmeh AA, Zhou Y, Xie B, Li H, Lee EYC, Lee MYWT (2011) Phosphorylation of the p68 subunit of Pol delta acts as a molecular switch to regulate its interaction with PCNA. Biochemistry 51(1):416–424. doi:10.1021/bi201638e

    PubMed  Google Scholar 

  • Ricke RM, Bielinsky A-K (2004) Mcm10 regulates the stability and chromatin association of DNA polymerase-alpha. Mol Cell 16(2):173–185. doi: 10.1016/jmolcell.2004.09.017

    PubMed  CAS  Google Scholar 

  • Rytkonen AK, Vaara M, Nethanel T, Kaufmann G, Sormunen R, Laara E, Nasheuer HP, Rahmeh A, Lee MY, Syvaoja JE, Pospiech H (2006) Distinctive activities of DNA polymerases during human DNA replication. FEBS J 273(13):2984–3001. doi:10.1111/j.1742-4658.2006.05310.x, EJB5310 [pii]

    PubMed  CAS  Google Scholar 

  • Santocanale C, Foiani M, Lucchini G, Plevani P (1993) The isolated 48,000-dalton subunit of yeast DNA primase is sufficient for RNA primer synthesis. J Biol Chem 268(2):1343–1348

    PubMed  CAS  Google Scholar 

  • Schmitt MW, Matsumoto Y, Loeb LA (2009) High fidelity and lesion bypass capability of human DNA polymerase delta. Biochimie 91(9):1163–1172. doi: 10.1016/j.biochi.2009.06.007

    PubMed  CAS  Google Scholar 

  • Schmitt MW, Venkatesan RN, Pillaire M-J, Hoffmann J-S, Sidorova JM, Loeb LA (2010) Active site mutations in mammalian DNA polymerase delta alter accuracy and replication fork progression. J Biol Chem 285(42):32264–32272. doi:10.1074/jbc.M110.147017

    PubMed  CAS  Google Scholar 

  • Shcherbakova PV, Pavlov YI (1996) 3′ → 5′ Exonucleases of DNA Polymerases ε and δ Correct Base Analog Induced DNA Replication Errors on Opposite DNA Strands in Saccharomyces cerevisiae. Genetics 142(3):717–726

    PubMed  CAS  Google Scholar 

  • Shcherbakova PV, Pavlov YI, Chilkova O, Rogozin IB, Johansson E, Kunkel TA (2003) Unique error signature of the four-subunit yeast DNA polymerase epsilon. J Biol Chem 278(44):43770–43780. doi:10.1074/jbc.M306893200

    PubMed  CAS  Google Scholar 

  • Sheaff RJ, Kuchta RD (1993) Mechanism of calf thymus DNA primase: slow initiation, rapid polymerization, and intelligent termination. Biochemistry 32(12):3027–3037. doi:10.1021/bi00063a014

    PubMed  CAS  Google Scholar 

  • Sheaff RJ, Kuchta RD (1994) Misincorporation of nucleotides by calf thymus DNA primase and elongation of primers containing multiple noncognate nucleotides by DNA polymerase alpha. J Biol Chem 269(30):19225–19231

    PubMed  CAS  Google Scholar 

  • Sheaff RJ, Kuchta RD, Ilsley D (1994) Calf thymus DNA polymerase alpha-primase: “communication” and primer-template movement between the two active sites. Biochemistry 33(8):2247–2254. doi:10.1021/bi00174a035

    PubMed  CAS  Google Scholar 

  • Shimizu K, Hashimoto K, Kirchner JM, Nakai W, Nishikawa H, Resnick MA, Sugino A (2002) Fidelity of DNA polymerase epsilon holoenzyme from budding yeast Saccharomyces cerevisiae. J Biol Chem 277(40):37422–37429. doi:10.1074/jbc.M204476200

    PubMed  CAS  Google Scholar 

  • Simon M, Giot L, Faye G (1991) The 3′ to 5′ exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J 10(8):2165–2170

    PubMed  CAS  Google Scholar 

  • Suzuki M, Izuta S, Yoshida S (1994) DNA polymerase alpha overcomes an error-prone pause site in the presence of replication protein-A. J Biol Chem 269(14):10225–10228

    PubMed  CAS  Google Scholar 

  • Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase [delta]. Nat Struct Mol Biol 16(9):979–986. doi: 10.1038/nsmb.1663

    PubMed  CAS  Google Scholar 

  • Syvaoja J, Linn S (1989) Characterization of a large form of DNA polymerase delta from HeLa cells that is insensitive to proliferating cell nuclear antigen. J Biol Chem 264(5):2489–2497

    PubMed  CAS  Google Scholar 

  • Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H (2003) GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev 17(9):1153–1165. doi:10.1101/gad.1065903

    PubMed  CAS  Google Scholar 

  • Tan CK, Castillo C, So AG, Downey KM (1986) An auxiliary protein for DNA polymerase-delta from fetal calf thymus. J Biol Chem 261(26):12310–12316

    PubMed  CAS  Google Scholar 

  • Thomas DC, Roberts JD, Sabatino RD, Myers TW, Tan CK, Downey KM, So AG, Bambara RA, Kunkel TA (1991) Fidelity of mammalian DNA replication and replicative DNA polymerases. Biochemistry 30(51):11751–11759. doi:10.1021/bi00115a003

    PubMed  CAS  Google Scholar 

  • Thompson HC, Sheaff RJ, Kuchta RD (1995) Interactions of calf thymus DNA polymerase alpha with primer/templates. Nucleic Acids Res 23(20):4109–4115

    PubMed  CAS  Google Scholar 

  • Tsubota T, Maki S, Kubota H, Sugino A, Maki H (2003) Double-stranded DNA binding properties of Saccharomyces cerevisiae DNA polymerase epsilon and of the Dpb3p-Dpb4p subassembly. Genes Cells 8 (11):873–888. doi: 10.1046/j.1365-2443.2003.00683

    Google Scholar 

  • Uchimura A, Hidaka Y, Hirabayashi T, Hirabayashi M, Yagi T (2009) DNA polymerase delta is required for early mammalian embryogenesis. PLoS One 4(1):e4184. doi: 10.1371/journal.pone.0004184

    PubMed  Google Scholar 

  • Uchiyama M, Wang TSF (2004) The B-subunit of DNA polymerase alpha-primase associates with the origin recognition complex for initiation of DNA replication. Mol Cell Biol 24(17):7419–7434. doi: 10.1128/mcb.24.17.7419-7434.2004

    PubMed  CAS  Google Scholar 

  • Venkatesan RN, Hsu JJ, Lawrence NA, Preston BD, Loeb LA (2006) Mutator phenotypes caused by substitution at a conserved motif a residue in eukaryotic DNA polymerase delta. J Biol Chem 281(7):4486–4494. doi:10.1074/jbc.M510245200

    PubMed  CAS  Google Scholar 

  • Venkatesan RN, Treuting PM, Fuller ED, Goldsby RE, Norwood TH, Gooley TA, Ladiges WC, Preston BD, Loeb LA (2007) Mutation at the polymerase active site of mouse DNA polymerase delta increases genomic instability and accelerates tumorigenesis. Mol Cell Biol 27(21):7669–7682. doi:10.1128/mcb.00002-07

    PubMed  CAS  Google Scholar 

  • Voitenleitner C, Rehfuess C, Hilmes M, O’Rear L, Liao PC, Gage DA, Ott R, Nasheuer HP, Fanning E (1999) Cell cycle-dependent regulation of human DNA polymerase alpha-primase activity by phosphorylation. Mol Cell Biol 19(1):646–656

    PubMed  CAS  Google Scholar 

  • Waga S, Masuda T, Takisawa H, Sugino A (2001) DNA polymerase epsilon is required for coordinated and efficient chromosomal DNA replication in Xenopus egg extracts. Proc Natl Acad Sci USA 98(9):4978–4983. doi:10.1073/pnas.081088798

    PubMed  CAS  Google Scholar 

  • Walter J, Newport J (2000) Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase alpha. Mol Cell 5(4):617–627. doi: 10.1016/S1097-2765(00)80241-5

    PubMed  CAS  Google Scholar 

  • Wang Y, Zhang Q, Chen H, Li X, Mai W, Chen K, Zhang S, Lee EYC, Lee MYWT, Zhou Y (2011) P50, the small subunit of DNA polymerase delta, is required for mediation of the interaction of polymerase delta subassemblies with PCNA. PLoS One 6(11):e27092. doi: 10.1371/journal.pone.0027092

    PubMed  CAS  Google Scholar 

  • Warren EM, Huang H, Fanning E, Chazin WJ, Eichman BF (2009) Physical interactions between Mcm10, DNA, and DNA polymerase alpha. J Biol Chem 284(36):24662–24672. doi: 10.1074/jbc.M109.020438

    PubMed  CAS  Google Scholar 

  • Weiser T, Gassmann M, Thommes P, Ferrari E, Hafkemeyer P, Hubscher U (1991) Biochemical and functional comparison of DNA polymerases alpha, delta, and epsilon from calf thymus. J Biol Chem 266(16):10420–10428

    PubMed  CAS  Google Scholar 

  • Weissbach A, Baltimore D, Bollum F, Gallo R, Korn D (1975) Nomenclature of eukaryotic DNA polymerases. Science 190(4212):401–402

    PubMed  CAS  Google Scholar 

  • Wong SW, Paborsky LR, Fisher PA, Wang TS, Korn D (1986) Structural and enzymological characterization of immunoaffinity-purified DNA polymerase alpha.DNA primase complex from KB cells. J Biol Chem 261(17):7958–7968

    PubMed  CAS  Google Scholar 

  • Xie B, Mazloum N, Liu L, Rahmeh A, Li H, Lee MYWT (2002) Reconstitution and characterization of the human DNA polymerase delta four-subunit holoenzyme. Biochemistry 41(44):13133–13142. doi:10.1021/bi0262707

    PubMed  CAS  Google Scholar 

  • Yamaguchi M, Hendrickson EA, DePamphilis ML (1985) DNA primase-DNA polymerase alpha from simian cells: sequence specificity of initiation sites on simian virus 40 DNA. Mol Cell Biol 5(5):1170–1183. doi:10.1128/mcb.5.5.1170

    PubMed  CAS  Google Scholar 

  • Yoneda M, Bollum FJ (1965) Deoxynucleotide-polymerizing enzymes of calf thymus gland. I. Large scale purification of terminal and replicative deoxynucleotidyl transferases. J Biol Chem 240:3385–3391

    PubMed  CAS  Google Scholar 

  • Zeng XR, Hao H, Jiang Y, Lee MY (1994) Regulation of human DNA polymerase delta during the cell cycle. J Biol Chem 269(39):24027–24033

    PubMed  CAS  Google Scholar 

  • Zerbe LK, Kuchta RD (2002) The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting. Biochemistry 41(15):4891–4900. doi:10.1021/bi016030b

    PubMed  CAS  Google Scholar 

  • Zhang P, Mo J-Y, Perez A, Leon A, Liu L, Mazloum N, Xu H, Lee MYWT (1999) Direct interaction of proliferating cell nuclear antigen with the p125 catalytic subunit of mammalian DNA polymerase delta. J Biol Chem 274(38):26647–26653. doi:10.1074/jbc.274.38.26647

    PubMed  CAS  Google Scholar 

  • Zhang S, Zhou Y, Trusa S, Meng X, Lee EYC, Lee MYWT (2007) A novel DNA damage response. J Biol Chem 282(21):15330–15340. doi:10.1074/jbc.M610356200

    PubMed  CAS  Google Scholar 

  • Zhou Y, Meng X, Zhang S, Lee EY, Lee MY (2012) Characterization of human DNA polymerase delta and its subassemblies reconstituted by expression in the MultiBac system. PLoS One 7(6):e39156. doi:10.1371/journal.pone.0039156, PONE-D-12-08472 [pii]

    PubMed  CAS  Google Scholar 

  • Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A (2007) Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev 21(18):2288–2299. doi: 10.1101/gad.1585607

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin A. Eckert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walsh, E., Eckert, K.A. (2014). Eukaryotic Replicative DNA Polymerases. In: Murakami, K., Trakselis, M. (eds) Nucleic Acid Polymerases. Nucleic Acids and Molecular Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39796-7_2

Download citation

Publish with us

Policies and ethics