Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 62))

Abstract

DNA polymerase ε (Pol ε) is one of three replicative DNA polymerases in eukaryotic cells. Pol ε is a multi-subunit DNA polymerase with many functions. For example, recent studies in yeast have suggested that Pol ε is essential during the initiation of DNA replication and also participates during leading strand synthesis. In this chapter, we will discuss the structure of Pol ε, the individual subunits and their function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksenova A, Volkov K, Maceluch J, Pursell ZF, Rogozin IB, Kunkel TA, Pavlov YI, Johansson E (2010) Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε. PLoS Genet 6:e1001209

    PubMed  Google Scholar 

  • Aparicio OM, Weinstein DM, Bell SP (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91:59–69

    PubMed  CAS  Google Scholar 

  • Araki H, Hamatake RK, Johnston LH, Sugino A (1991) DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88:4601–4605

    PubMed  CAS  Google Scholar 

  • Araki H, Ropp PA, Johnson AL, Johnston LH, Morrison A, Sugino A (1992) DNA polymerase II, the probable homolog of mammalian DNA polymerase ε, replicates chromosomal DNA in the yeast Saccharomyces cerevisiae. EMBO J 11:733–740

    PubMed  CAS  Google Scholar 

  • Aravind L, Koonin EV (1998) Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26:3746–3752

    PubMed  CAS  Google Scholar 

  • Arents G, Moudrianakis EN (1993) Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc Natl Acad Sci U S A 90:10489–10493

    PubMed  CAS  Google Scholar 

  • Asturias FJ, Cheung IK, Sabouri N, Chilkova O, Wepplo D, Johansson E (2006) Structure of Saccharomyces cerevisiae DNA polymerase epsilon by cryo-electron microscopy. Nat Struct Mol Biol 13:35–43

    PubMed  CAS  Google Scholar 

  • Bambara RA, Fay PJ, Mallaber LM (1995) Methods of analyzing processivity. Methods Enzymol 262:270–280

    PubMed  CAS  Google Scholar 

  • Baxevanis AD, Arents G, Moudrianakis EN, Landsman D (1995) A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic Acids Res 23:2685–2691

    PubMed  CAS  Google Scholar 

  • Bermudez VP, MacNeill SA, Tappin I, Hurwitz J (2002) The influence of the Cdc27 subunit on the properties of the Schizosaccharomyces pombe DNA polymerase δ. J Biol Chem 277:36853–36862

    PubMed  CAS  Google Scholar 

  • Boiteux S, Guillet M (2004) Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amst) 3:1–12

    CAS  Google Scholar 

  • Bonnin A, Lazaro JM, Blanco L, Salas M (1999) A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type phi29 DNA polymerase. J Mol Biol 290:241–251

    PubMed  CAS  Google Scholar 

  • Brown JA, Suo Z (2011) Unlocking the sugar “steric gate” of DNA polymerases. Biochemistry 50:1135–1142

    PubMed  CAS  Google Scholar 

  • Bubeck D, Reijns MA, Graham SC, Astell KR, Jones EY, Jackson AP (2011) PCNA directs type 2 RNase H activity on DNA replication and repair substrates. Nucleic Acids Res 39:3652–3666

    PubMed  CAS  Google Scholar 

  • Budd ME, Campbell JL (1993) DNA polymerases delta and epsilon are required for chromosomal replication in Saccharomyces cerevisiae. Mol Cell Biol 13:496–505

    PubMed  CAS  Google Scholar 

  • Burgers PM (1991) Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases δ and epsilon. J Biol Chem 266:22698–22706

    PubMed  CAS  Google Scholar 

  • Burgess SA, Walker ML, Thirumurugan K, Trinick J, Knight PJ (2004) Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J Struct Biol 147:247–258

    PubMed  CAS  Google Scholar 

  • Chilkova O, Jonsson BH, Johansson E (2003) The quaternary structure of DNA polymerase ε from Saccharomyces cerevisiae. J Biol Chem 278:14082–14086

    PubMed  CAS  Google Scholar 

  • Chilkova O, Stenlund P, Isoz I, Stith CM, Grabowski P, Lundstrom EB, Burgers PM, Johansson E (2007) The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA. Nucleic Acids Res 35:6588–6597

    PubMed  CAS  Google Scholar 

  • Connolly BA (2009) Recognition of deaminated bases by archaeal family-B DNA polymerases. Biochem Soc Trans 37:65–68

    PubMed  CAS  Google Scholar 

  • Dang W, Kagalwala MN, Bartholomew B (2007) The Dpb4 subunit of ISW2 is anchored to extranucleosomal DNA. J Biol Chem 282:19418–19425

    PubMed  CAS  Google Scholar 

  • Delarue M, Poch O, Tordo N, Moras D, Argos P (1990) An attempt to unify the structure of polymerases. Protein Eng 3:461–467

    PubMed  CAS  Google Scholar 

  • Drury LS, Perkins G, Diffley JF (1997) The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J 16:5966–5976

    PubMed  CAS  Google Scholar 

  • Dua R, Levy DL, Campbell JL (1998) Role of the putative zinc finger domain of Saccharomyces cerevisiae DNA polymerase ε in DNA replication and the S/M checkpoint pathway. J Biol Chem 273:30046–30055

    PubMed  CAS  Google Scholar 

  • Dua R, Levy DL, Campbell JL (1999) Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain. J Biol Chem 274:22283–22288

    PubMed  CAS  Google Scholar 

  • Dua R, Levy DL, Li CM, Snow PM, Campbell JL (2002) In vivo reconstitution of Saccharomyces cerevisiae DNA polymerase ε in insect cells. Purification and characterization. J Biol Chem 277:7889–7896

    PubMed  CAS  Google Scholar 

  • Ducoux M, Urbach S, Baldacci G, Hubscher U, Koundrioukoff S, Christensen J, Hughes P (2001) Mediation of proliferating cell nuclear antigen (PCNA)-dependent DNA replication through a conserved p21Cip1-like PCNA-binding motif present in the third subunit of human DNA polymerase δ. J Biol Chem 276:49258–49266

    PubMed  CAS  Google Scholar 

  • Feng W, D’Urso G (2001) Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase ε are viable but require the DNA damage checkpoint control. Mol Cell Biol 21:4495–4504

    PubMed  CAS  Google Scholar 

  • Feng W, Rodriguez-Menocal L, Tolun G, D’Urso G (2003) Schizosacchromyces pombe Dpb2 binds to origin DNA early in S phase and is required for chromosomal DNA replication. Mol Biol Cell 14:3427–3436

    PubMed  CAS  Google Scholar 

  • Fogg MJ, Pearl LH, Connolly BA (2002) Structural basis for uracil recognition by archaeal family B DNA polymerases. Nat Struct Biol 9:922–927

    PubMed  CAS  Google Scholar 

  • Fortune JM, Pavlov YI, Welch CM, Johansson E, Burgers PM, Kunkel TA (2005) Saccharomyces cerevisiae DNA polymerase δ: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. J Biol Chem 280:29980–29987

    PubMed  CAS  Google Scholar 

  • Franklin MC, Wang J, Steitz TA (2001) Structure of the replicating complex of a pol α family DNA polymerase. Cell 105:657–667

    PubMed  CAS  Google Scholar 

  • Gardner AF, Jack WE (1999) Determinants of nucleotide sugar recognition in an archaeon DNA polymerase. Nucleic Acids Res 27:2545–2553

    PubMed  CAS  Google Scholar 

  • Garg P, Stith CM, Sabouri N, Johansson E, Burgers PM (2004) Idling by DNA polymerase δ maintains a ligatable nick during lagging-strand DNA replication. Genes Dev 18:2764–2773

    PubMed  CAS  Google Scholar 

  • Gerik KJ, Li X, Pautz A, Burgers PM (1998) Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase δ. J Biol Chem 273:19747–19755

    PubMed  CAS  Google Scholar 

  • Hamatake RK, Hasegawa H, Clark AB, Bebenek K, Kunkel TA, Sugino A (1990) Purification and characterization of DNA polymerase II from the yeast Saccharomyces cerevisiae. Identification of the catalytic core and a possible holoenzyme form of the enzyme. J Biol Chem 265:4072–4083

    PubMed  CAS  Google Scholar 

  • Harp JM, Hanson BL, Timm DE, Bunick GJ (2000) Asymmetries in the nucleosome core particle at 2.5 Å resolution. Acta Crystallogr D Biol Crystallogr 56:1513–1534

    PubMed  CAS  Google Scholar 

  • Hartlepp KF, Fernandez-Tornero C, Eberharter A, Grune T, Muller CW, Becker PB (2005) The histone fold subunits of Drosophila CHRAC facilitate nucleosome sliding through dynamic DNA interactions. Mol Cell Biol 25:9886–9896

    PubMed  CAS  Google Scholar 

  • Jaszczur M, Flis K, Rudzka J, Kraszewska J, Budd ME, Polaczek P, Campbell JL, Jonczyk P, Fijalkowska IJ (2008) Dpb2p, a noncatalytic subunit of DNA polymerase ε, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae. Genetics 178:633–647

    PubMed  CAS  Google Scholar 

  • Jaszczur M, Rudzka J, Kraszewska J, Flis K, Polaczek P, Campbell JL, Fijalkowska IJ, Jonczyk P (2009) Defective interaction between Pol2p and Dpb2p, subunits of DNA polymerase ε, contributes to a mutator phenotype in Saccharomyces cerevisiae. Mutat Res 669:27–35

    PubMed  CAS  Google Scholar 

  • Jin YH, Obert R, Burgers PM, Kunkel TA, Resnick MA, Gordenin DA (2001) The 3′→5′ exonuclease of DNA polymerase δ can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc Natl Acad Sci U S A 98:5122–5127

    PubMed  CAS  Google Scholar 

  • Johansson E, Garg P, Burgers PM (2004) The Pol32 subunit of DNA polymerase δ contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J Biol Chem 279:1907–1915

    PubMed  CAS  Google Scholar 

  • Joyce CM (1997) Choosing the right sugar: how polymerases select a nucleotide substrate. Proc Natl Acad Sci U S A 94:1619–1622

    PubMed  CAS  Google Scholar 

  • Karthikeyan R, Vonarx EJ, Straffon AF, Simon M, Faye G, Kunz BA (2000) Evidence from mutational specificity studies that yeast DNA polymerases δ and ε replicate different DNA strands at an intracellular replication fork. J Mol Biol 299:405–419

    PubMed  CAS  Google Scholar 

  • Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3:679–685

    PubMed  CAS  Google Scholar 

  • Kesti T, McDonald WH, Yates JR 3rd, Wittenberg C (2004) Cell cycle-dependent phosphorylation of the DNA polymerase ε subunit, Dpb2, by the Cdc28 cyclin-dependent protein kinase. J Biol Chem 279:14245–14255

    PubMed  CAS  Google Scholar 

  • Kokoska RJ, McCulloch SD, Kunkel TA (2003) The efficiency and specificity of apurinic/apyrimidinic site bypass by human DNA polymerase η and Sulfolobus solfataricus Dpo4. J Biol Chem 278:50537–50545

    PubMed  CAS  Google Scholar 

  • Komata M, Bando M, Araki H, Shirahige K (2009) The direct binding of Mrc1, a checkpoint mediator, to Mcm6, a replication helicase, is essential for the replication checkpoint against methyl methanesulfonate-induced stress. Mol Cell Biol 29:5008–5019

    PubMed  CAS  Google Scholar 

  • Krakoff IH, Brown NC, Reichard P (1968) Inhibition of ribonucleoside diphosphate reductase by hydroxyurea. Cancer Res 28:1559–1565

    PubMed  CAS  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Hamatake RK, Motto-Fox J, Fitzgerald MP, Sugino A (1989) Fidelity of DNA polymerase I and the DNA polymerase I-DNA primase complex from Saccharomyces cerevisiae. Mol Cell Biol 9:4447–4458

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Roberts JD, Sugino A (1991) The fidelity of DNA synthesis by the catalytic subunit of yeast DNA polymerase α alone and with accessory proteins. Mutat Res 250:175–182

    PubMed  CAS  Google Scholar 

  • Larrea AA, Lujan SA, Nick McElhinny SA, Mieczkowski PA, Resnick MA, Gordenin DA, Kunkel TA (2010) Genome-wide model for the normal eukaryotic DNA replication fork. Proc Natl Acad Sci U S A 107:17674–17679

    PubMed  CAS  Google Scholar 

  • Lee SH, Pan ZQ, Kwong AD, Burgers PM, Hurwitz J (1991) Synthesis of DNA by DNA polymerase ε in vitro. J Biol Chem 266:22707–22717

    PubMed  CAS  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    PubMed  CAS  Google Scholar 

  • Levin DS, Bai W, Yao N, O’Donnell M, Tomkinson AE (1997) An interaction between DNA ligase I and proliferating cell nuclear antigen: implications for Okazaki fragment synthesis and joining. Proc Natl Acad Sci U S A 94:12863–12868

    PubMed  CAS  Google Scholar 

  • Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd M, Shirahige K, Campbell JL (2008) Mrc1 and DNA polymerase ε function together in linking DNA replication and the S phase checkpoint. Mol Cell 32:106–117

    PubMed  CAS  Google Scholar 

  • McCulloch SD, Kunkel TA (2008) The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18:148–161

    PubMed  CAS  Google Scholar 

  • McCulloch SD, Kokoska RJ, Chilkova O, Welch CM, Johansson E, Burgers PM, Kunkel TA (2004) Enzymatic switching for efficient and accurate translesion DNA replication. Nucleic Acids Res 32:4665–4675

    PubMed  CAS  Google Scholar 

  • Minnick DT, Bebenek K, Osheroff WP, Turner RM Jr, Astatke M, Liu L, Kunkel TA, Joyce CM (1999) Side chains that influence fidelity at the polymerase active site of Escherichia coli DNA polymerase I (Klenow fragment). J Biol Chem 274:3067–3075

    PubMed  CAS  Google Scholar 

  • Minnick DT, Liu L, Grindley ND, Kunkel TA, Joyce CM (2002) Discrimination against purine-pyrimidine mispairs in the polymerase active site of DNA polymerase I: a structural explanation. Proc Natl Acad Sci U S A 99:1194–1199

    PubMed  CAS  Google Scholar 

  • Mirkin EV, Mirkin SM (2007) Replication fork stalling at natural impediments. Microbiol Mol Biol Rev 71:13–35

    PubMed  CAS  Google Scholar 

  • Morrison A, Bell JB, Kunkel TA, Sugino A (1991) Eukaryotic DNA polymerase amino acid sequence required for 3′→5′ exonuclease activity. Proc Natl Acad Sci U S A 88:9473–9477

    PubMed  CAS  Google Scholar 

  • Morrison A, Johnson AL, Johnston LH, Sugino A (1993) Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J 12:1467–1473

    PubMed  CAS  Google Scholar 

  • Muramatsu S, Hirai K, Tak YS, Kamimura Y, Araki H (2010) CDK-dependent complex formation between replication proteins Dpb11, Sld2, Pol ε, and GINS in budding yeast. Genes Dev 24:602–612

    PubMed  CAS  Google Scholar 

  • Navadgi-Patil VM, Burgers PM (2009) A tale of two tails: activation of DNA damage checkpoint kinase Mec1/ATR by the 9-1-1 clamp and by Dpb11/TopBP1. DNA Repair (Amst) 8:996–1003

    CAS  Google Scholar 

  • Navas TA, Zhou Z, Elledge SJ (1995) DNA polymerase ε links the DNA replication machinery to the S phase checkpoint. Cell 80:29–39

    PubMed  CAS  Google Scholar 

  • Navas TA, Sanchez Y, Elledge SJ (1996) RAD9 and DNA polymerase ε form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae. Genes Dev 10:2632–2643

    PubMed  CAS  Google Scholar 

  • Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA (2008) Division of labor at the eukaryotic replication fork. Mol Cell 30:137–144

    PubMed  CAS  Google Scholar 

  • Nick McElhinny SA, Kumar D, Clark AB, Watt DL, Watts BE, Lundstrom EB, Johansson E, Chabes A, Kunkel TA (2010a) Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6:774–781

    PubMed  CAS  Google Scholar 

  • Nick McElhinny SA, Watts BE, Kumar D, Watt DL, Lundstrom EB, Burgers PM, Johansson E, Chabes A, Kunkel TA (2010b) Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc Natl Acad Sci U S A 107:4949–4954

    PubMed  CAS  Google Scholar 

  • Niedernhofer LJ, Lalai AS, Hoeijmakers JH (2005) Fanconi anemia (cross)linked to DNA repair. Cell 123:1191–1198

    PubMed  CAS  Google Scholar 

  • Nuutinen T, Tossavainen H, Fredriksson K, Pirila P, Permi P, Pospiech H, Syvaoja JE (2008) The solution structure of the amino-terminal domain of human DNA polymerase ε subunit B is homologous to C-domains of AAA+ proteins. Nucleic Acids Res 36:5102–5110

    PubMed  CAS  Google Scholar 

  • Ohya T, Maki S, Kawasaki Y, Sugino A (2000) Structure and function of the fourth subunit (Dpb4p) of DNA polymerase ε in Saccharomyces cerevisiae. Nucleic Acids Res 28:3846–3852

    PubMed  CAS  Google Scholar 

  • Ohya T, Kawasaki Y, Hiraga S, Kanbara S, Nakajo K, Nakashima N, Suzuki A, Sugino A (2002) The DNA polymerase domain of pol(epsilon) is required for rapid, efficient, and highly accurate chromosomal DNA replication, telomere length maintenance, and normal cell senescence in Saccharomyces cerevisiae. J Biol Chem 277:28099–28108

    PubMed  CAS  Google Scholar 

  • Pavlov YI, Frahm C, Nick McElhinny SA, Niimi A, Suzuki M, Kunkel TA (2006) Evidence that errors made by DNA polymerase α are corrected by DNA polymerase δ. Curr Biol 16:202–207

    PubMed  CAS  Google Scholar 

  • Payne BT, van Knippenberg IC, Bell H, Filipe SR, Sherratt DJ, McGlynn P (2006) Replication fork blockage by transcription factor-DNA complexes in Escherichia coli. Nucleic Acids Res 34:5194–5202

    PubMed  CAS  Google Scholar 

  • Penczek PA, Grassucci RA, Frank J (1994) The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53:251–270

    PubMed  CAS  Google Scholar 

  • Puddu F, Piergiovanni G, Plevani P, Muzi-Falconi M (2011) Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase ε. PLoS Genet 7:e1002022

    PubMed  CAS  Google Scholar 

  • Pursell ZF, Kunkel TA (2008) DNA polymerase epsilon: a polymerase of unusual size (and complexity). Prog Nucleic Acid Res Mol Biol 82:101–145

    PubMed  CAS  Google Scholar 

  • Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA (2007) Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 317:127–130

    PubMed  CAS  Google Scholar 

  • Randell JC, Bowers JL, Rodriguez HK, Bell SP (2006) Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell 21:29–39

    PubMed  CAS  Google Scholar 

  • Rogozin IB, Makarova KS, Pavlov YI, Koonin EV (2008) A highly conserved family of inactivated archaeal B family DNA polymerases. Biol Direct 3:32

    PubMed  Google Scholar 

  • Shamoo Y, Steitz TA (1999) Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99:155–166

    PubMed  CAS  Google Scholar 

  • Shcherbakova PV, Pavlov YI (1996) 3′→5′ Exonucleases of DNA polymerases ε and δ correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics 142:717–726

    PubMed  CAS  Google Scholar 

  • Shcherbakova PV, Bebenek K, Kunkel TA (2003a) Functions of eukaryotic DNA polymerases. Sci Aging Knowledge Environ 2003:RE3

    PubMed  Google Scholar 

  • Shcherbakova PV, Pavlov YI, Chilkova O, Rogozin IB, Johansson E, Kunkel TA (2003b) Unique error signature of the four-subunit yeast DNA polymerase ε. J Biol Chem 278:43770–43780

    PubMed  CAS  Google Scholar 

  • Shikata K, Sasa-Masuda T, Okuno Y, Waga S, Sugino A (2006) The DNA polymerase activity of Pol ε holoenzyme is required for rapid and efficient chromosomal DNA replication in Xenopus egg extracts. BMC Biochem 7:21

    PubMed  Google Scholar 

  • Shiotani B, Kobayashi M, Watanabe M, Yamamoto K, Sugimura T, Wakabayashi K (2006) Involvement of the ATR- and ATM-dependent checkpoint responses in cell cycle arrest evoked by pierisin-1. Mol Cancer Res 4:125–133

    PubMed  CAS  Google Scholar 

  • Steitz TA (1993) DNA- and RNA-dependent DNA polymerases. Curr Opin Struct Biol 3:31–38

    CAS  Google Scholar 

  • Stinchcomb DT, Struhl K, Davis RW (1979) Isolation and characterisation of a yeast chromosomal replicator. Nature 282:39–43

    PubMed  CAS  Google Scholar 

  • Stocki SA, Nonay RL, Reha-Krantz LJ (1995) Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3′→5′ exonuclease activities. J Mol Biol 254:15–28

    PubMed  CAS  Google Scholar 

  • Tahirov TH, Makarova KS, Rogozin IB, Pavlov YI, Koonin EV (2009) Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol Direct 4:11

    PubMed  Google Scholar 

  • Takayama Y, Kamimura Y, Okawa M, Muramatsu S, Sugino A, Araki H (2003) GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev 17:1153–1165

    PubMed  CAS  Google Scholar 

  • Traut TW (1994) Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 140:1–22

    PubMed  CAS  Google Scholar 

  • Tsubota T, Maki S, Kubota H, Sugino A, Maki H (2003) Double-stranded DNA binding properties of Saccharomyces cerevisiae DNA polymerase ε and of the Dpb3p-Dpb4p subassembly. Genes Cells 8:873–888

    PubMed  CAS  Google Scholar 

  • Tsubota T, Tajima R, Ode K, Kubota H, Fukuhara N, Kawabata T, Maki S, Maki H (2006) Double-stranded DNA binding, an unusual property of DNA polymerase ε, promotes epigenetic silencing in Saccharomyces cerevisiae. J Biol Chem 281:32898–32908

    PubMed  CAS  Google Scholar 

  • Warbrick E, Lane DP, Glover DM, Cox LS (1997) Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair. Oncogene 14:2313–2321

    PubMed  CAS  Google Scholar 

  • Warbrick E, Heatherington W, Lane DP, Glover DM (1998) PCNA binding proteins in Drosophila melanogaster: the analysis of a conserved PCNA binding domain. Nucleic Acids Res 26:3925–3932

    PubMed  CAS  Google Scholar 

  • Wardle J, Burgers PM, Cann IK, Darley K, Heslop P, Johansson E, Lin LJ, McGlynn P, Sanvoisin J, Stith CM, Connolly BA (2008) Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya. Nucleic Acids Res 36:705–711

    PubMed  CAS  Google Scholar 

  • Watt DL, Johansson E, Burgers PM, Kunkel TA (2011) Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases. DNA Repair (Amst) 10:897–902

    CAS  Google Scholar 

  • Wu P, Nossal N, Benkovic SJ (1998) Kinetic characterization of a bacteriophage T4 antimutator DNA polymerase. Biochemistry 37:14748–14755

    PubMed  CAS  Google Scholar 

  • Yang G, Lin T, Karam J, Konigsberg WH (1999) Steady-state kinetic characterization of RB69 DNA polymerase mutants that affect dNTP incorporation. Biochemistry 38:8094–8101

    PubMed  CAS  Google Scholar 

  • Yang G, Franklin M, Li J, Lin TC, Konigsberg W (2002) A conserved Tyr residue is required for sugar selectivity in a Pol α DNA polymerase. Biochemistry 41:10256–10261

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Kempestiftelserna (M.H. and E.J), the Swedish Research Council, the Swedish Cancer Society, and Smärtafonden (E.J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hogg, M., Johansson, E. (2012). DNA Polymerase ε. In: MacNeill, S. (eds) The Eukaryotic Replisome: a Guide to Protein Structure and Function. Subcellular Biochemistry, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4572-8_13

Download citation

Publish with us

Policies and ethics