Skip to main content
Log in

Expression of ogu cytoplasmic male sterility in cybrids of Brassica napus

  • Originals
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

A light and electron microscopic investigation revealed that ogu cytoplasmic male sterility (CMS) in cybrids of Brassica napus is primarily a deficiency of the tapetum and clearly time and site specific. Three patterns of ogu CMS were found, and specific conclusions drawn. First, the partially male fertile cybrid 23 was highly variable. It sometimes produced heterogeneous stamens with an endothecium formed exclusively around the fertile locules, thus delineating each microsporangium as a functional unit. The second type, including cybrids 27, 58 and 85, on the contrary, was stable and completely male sterile. In the four locules of normal length, microspores were observed to die at the vacuolate polarized stage while the tapetum disappeared prematurely through excessive vacuolization by the end of meiosis followed by a rapid autolysis during the tetrad or early free microspore stage. The subepidermal layer of the locule wall failed to form characteristic thickenings. The male-sterile stamens were completely indehiscent. At the time of anthesis they contained only collapsed empty exines adhering to each other. These cybrids, 27, 58 and 85, were closest to the ogu CMS trait of radish and seemed to be the best suited for further use in plant breeding. The third pattern was found in cybrids 77 and 118, which besides showing abortion of the microsporangia also showed a feminization of the stamens. We suggest that this feminization might be due to an alloplasmic situation associating Brassica napus nuclear genes with the mitochondrial DNA of radish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albersten MC, Palmer RG (1979) A comparative light and electron microscope study of microsporogenesis in male sterile (M. S.) and male fertile soybeans (Glycine max L Merr). Am J Bot 66:253–265

    Google Scholar 

  • Alexander MP (1969) Differential staining of aborted and nonaborted pollen. Stain Technol 44:117–122

    Google Scholar 

  • Bannerot H, Boulidard L, Cauderon Y, Tempe J (1974) Cytoplasmic male sterility transfer from Raphanus to Brassica. Proc Eucarpia Crop Sect Cruciferae 25:52–54

    Google Scholar 

  • Bartkowiak-Broda I, Rousselle P, Renard M (1979) Investigations of two kinds of cytoplasmic male sterility in rapeseed (Brassica napus L.) Genet Pol 20:487–4

    Google Scholar 

  • Cerceau-Larrival MT, Duc G, Audran JC, Bouillot J (1982) La stérilité mâle nucléocytoplasmique chez la féverole (Vicia faba L.). IV. Incidence de la stérilité mâle nucleo-cytoplasmique 447 sur le phénotype du pollen à Panthose. Rev Cytol Biol Végét Bot 5:81–93

    Google Scholar 

  • Chetrit P, Mathieu C, Vedel F, Pelletier G, Primard C (1985) Mitochondrial DNA polymorphism induced by protoplast fusion in Cruciferae. Theor Appl Genet 69:361–366

    Google Scholar 

  • Colhoun CW, Steer MW (1981) Microsporogenesis and the mechanism of cytoplasmic male sterility. Ann Bot 48:417–424

    Google Scholar 

  • Dickinson HG (1973) The role of plastids in the formation of pollen grain coatings. Cytobios 8:25–40

    Google Scholar 

  • Echlin P (1971) The role of the tapetum during microsporogenesis of angiosperms. In: Heslop-Harrison J (ed) Pollen: development and physiology Butterworths, London, pp 41–61

    Google Scholar 

  • Grant I, Beversdorf WD, Peterson RL (1986) A comparative light and electron microscopic study of microspore and tapetal development in male fertile and cytoplasmic male sterile oilseed rape (Brassica napus). Can J Bot 64:1055–1068

    Google Scholar 

  • Graybosch RA, Palmer RG (1987) Analysis of a male-sterile character in soybeans. J Hered 78:66–70

    Google Scholar 

  • Graybosch RA, Bernard RL, Cremens CR, Palmer RG (1984) Genetic and cytological studies of a male-sterile, female fetile soybean mutant. A new male sterile gene (ms2) in Glycine max (L.) Merr. J Hered 75:383–388

    Google Scholar 

  • Kaul MLH (1988) Male sterility in higher plants. Monographs on theoretical and applied genetics vol 10. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Heslop-Harrisson J (1968) Tapetal origin of pollen-coat substances in Lilium. New Phytol 67:779–786

    Google Scholar 

  • Horner HT (1977) A comparative light-and electron-microscopic study of microsporogenesis in male-fertile and cytoplasmic male-sterile sunflower (Helianthus annuus). Am J Bot 64:745–759

    Google Scholar 

  • Laveau JH, Schneider C, Berville A (1989) Microsporogenesis abortion in cytoplasmic male sterile plants from H. petiolaris or H. petiolaris fallax crossed by sunflower (Helianthus annuus). Ann Bot 64:137–148

    Google Scholar 

  • Lee SLJ (1976) The cytology of pollen abortion in T (Texas) cytoplasmic male sterile corn (Zea mays L.) Ph. D. thesis, University of Florida

  • Lee SLJ, Warmke HE (1979) Organelle size and number in fertile and T-cms corn. Am J Bot 66:141–148

    Google Scholar 

  • Lee SLJ, Gracen VE, Earle ED (1979) The cytology of pollen abortion in C-cytoplasmic male sterile corn anthers. Am J Bot 66:656–667

    Google Scholar 

  • Lee SLJ, Earle ED, Gracen VE (1980) The cytology of pollenabortion in S cytoplasmic male-sterile corn anthers. Am J Bot 67:237–245

    Google Scholar 

  • Mascarenhas JP (1975) The biochemistry of angiosperm pollen development. Bot Rev 41:259–314

    Google Scholar 

  • Maurin N (1984) Anomalies cellulaires liées aux stérilités mâles de la féverole (Vicia faba L.) Mém DEA Sci Agron Univ Rennes 1984

  • Mesquida J, Pham-Délègue MH, Marilleau R, Le Métayer M, Renard M (1991) La sécrétion nectarifére des fleurs de cybrides mâle-stériles de colza d'hiver (Brassica napus L). Agronomie 11:217–227

    Google Scholar 

  • Ogura H (1968) Studies on the new male sterility in Japanese radish, with special reference to the utilization of this sterilitytowards the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ 6:39–78

    Google Scholar 

  • Overman MA, Warmke HE (1972) Cytoplasmic male sterility in sorghum. II. Tapetal behavior in fertile and sterile anthers. J Hered 63:227–234

    Google Scholar 

  • Pellan-Delourme R (1986) Etude de deux systèmes de stérilité mâle génocytoplasmique introduits chez le colza (Brassica napus L.) par croisements intergénériques avec Raphanus et Diplotaxis. Thèse, Université de Rennes

  • Pellan-Delourme R., Renard M (1987). Identification of maintainer genes in Brassica napus L. for the male- sterility-inducing cytoplasm of Diplotaxis muralis L. Plant Breed 99:89–97

    Google Scholar 

  • Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rousselle P, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191:244–250

    Google Scholar 

  • Pelletier G, Primard C, Vedel F, Chetrit P, Renard M, Pellan-Delourme R, Mesquida J (1987) Molecular, phenotypic and genetic characterization of mitochondrial recombinants in rapeseed. In: Proc 7th Int Rapeseed Conf. Poznan, pp 113–118

  • Polowick PL, Sawhney VK (1987) A scanning electron microscopic study on the influence of temperature on the expression of cytoplasmic male sterility in Brassica napus. Can J Bot 65:807–814

    Google Scholar 

  • Polowick PL, Sawhney VK (1991a) Microsporogenesis in a normal line and in the ogu cytoplasmic male-sterile line of Brassica napus. I. The influence of high temperatures. Sex Plant Reprod 3:263–276

    Google Scholar 

  • Polowick PL, Sawhney VK (1991b) Microsporogenesis in a normal line and in the ogu cytoplasmic male-sterile line of Brassica napus. II. The influence of intermediate and low temperatures. Sex Plant Reprod 4:22–27

    Google Scholar 

  • Rousselle P (1982) Premiers résultats d'un programme d'introduction de l'androstérilité “Ogura” du radis chez le colza. Agronomie 2:859–864

    Google Scholar 

  • Vasil IK (1967) Physiology and cytology of anther development. Biol Rev 42:327–373

    Google Scholar 

  • Vedel F, Chetrit P, Mathieu C, Pelletier G, Primard C (1986) Several different mitochondrial DNA regions are involved in intergeneric recombination in Brassica cybrid plants. Curr Genet 11:17–24

    Google Scholar 

  • Warmke HE, Lee S-LJ (1977) Mitochondrial degeneration in Texas cytoplasmic male-sterile corn anthers. J Hered 68:213–222

    Google Scholar 

  • Warmke HE, Overman MA (1972) Cytoplasmic male sterility in sorghum. I. Callose behavior in fertile and sterile anthers. J Hered 63:105–106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. F. Linskens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourret, J.P., Delourme, R. & Renard, M. Expression of ogu cytoplasmic male sterility in cybrids of Brassica napus . Theoret. Appl. Genetics 83, 549–556 (1992). https://doi.org/10.1007/BF00226898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00226898

Key words

Navigation