Skip to main content
Log in

Correlation of neuronal size and peptide immunoreactivity in the guinea-pig trigeminal ganglion

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Frequency and size of guinea-pig trigeminal neurones immunoreactive with antisera to α-neo-endorphin(α-neo-END), dynorphin A-(DYN), vasoactive intestinal polypeptide-(VIP), somatostatin-(SOM), and substance P-(SP) are reported. Co-localisation of the various peptides to the same ganglion cells was investigated immunocytochemically in consecutive 7-μm thick paraffin sections. According to their size, all peptide-immunoreactive neurones belong to the class of “small” ganglion cells. Within this cell group, SP-immunoreactive neurones appear to be the largest, followed by SOM-, VIP-, α-neo-END- and DYN-immunoreactive ganglion cells. The observed differences in size are statistically significant with the exception of that between α-neo-END and DYN. This finding correlates well with the observed co-occurrence of the two immunoreactive peptides. All α-neo-END-immunoreactive perikarya are also reactive to VIP antisera. These neurones are significantly smaller than those containing VIP-immunoreactivity exclusively. Ganglion cells displaying co-existence of α-neoEND- and SP-immunoreactivity or VIP- and SP-immunoreactivity are found too infrequently to allow morphometric analysis. Some non-immunoreactive ganglion cells are shown to be approached by dense baskets of VIP-, α-neo-END- or SP-immunoreactive varicose fibres, indicating the presence of intraganglionic modulation sites. The combination of immunohistochemistry and morphometry presented in this study allows the differentiation of diverse populations of primary afferent neurones exhibiting peptide immunoreactivity, most likely reflecting their involvement in different central and peripheral reflex arcs and sensory modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arvidsson B, Kristensson K, Olsson Y (1973) Vascular permeability to fluorescent protein tracer in trigeminal nerve and Gasserian ganglion. Acta Neuropathol (Berl) 26:199–205

    Google Scholar 

  • Brimijoin S, Lundberg JM, Brodin E, Hökfelt T, Nilsson G (1980) Axonal transport of substance P in the vagus and sciatic nerves of the guinea pig. Brain Res 191: 443–457

    Google Scholar 

  • Chan-Palay V, Palay SL (1977) Ultrastructural identification of substance P cells and their processes in rat sensory ganglia and their terminals in the spinal cord by immunocytochemistry. Proc Natl Acad Sci USA 74:4050–4054

    Google Scholar 

  • Colombo M, Heym C, Lang R (1986) Immunhistochemie von Opioiden in Paraganglien des Meerschweinchens. Anat Anz (in press)

  • Costa M, Furness JB, Cuello AC (1985) Separate populations of opioid containing neurons in the guinea-pig intestine. Neuropeptides 5:445–448

    Google Scholar 

  • Cuello AC, Del Fiacco M, Paxinos G (1978) The central and peripheral ends of the substance P-containing sensory neurones in the rat trigeminal system. Brain Res 152:499–509

    Google Scholar 

  • Dalsgaard CJ, Vincent SR, Hökfelt T, Lundberg JM, Dahlström A, Schultzberg M, Dockray GJ, Cuello AC (1982) Coexistence of chole cystokinin- and substance P-like peptides in neurones of the dorsal root ganglia of the rat. Neurosci Lett 33:159–163

    Google Scholar 

  • Dogiel AS (1896) Der Bau der Spinalganglien bei den Säugetieren. Anat Anz 12:140–152

    Google Scholar 

  • Fink BR, Byers M, Middaugh (1973) Dynamics of colchicine effects on rapid axonal transport and axonal morphology. Brain Res 56:299–311

    Google Scholar 

  • Forssmann WG, Pickel V, Reinecke M, Hock D, Metz J (1981) Immunohistochemistry and immunocytochemistry of nervous tissue. In: Heym C, Forssmann WG (eds) Techniques in neuroanatomical research. Springer, Berlin Heidelberg New York, pp 171–206

    Google Scholar 

  • Froesch D (1973) A simple method to estimate the true diameter of synaptic vesicles. J Microsc 98:85–89

    Google Scholar 

  • Gamse R, Holzer P, Lembeck F (1980) Decrease of substance P in primary afferent neurons and impairment of neurogenic plasma extravasation by capsaicin. Br J Pharmacol 68:207–213

    Google Scholar 

  • Gillis RA, Helke CJ, Hamilton BL, Norman WP, Jacobowitz DM (1980) Evidence that substance P is a neurotransmitter of baroand chemoreceptor afferents in nucleus tractus solitarius. Brain Res 181:476–481

    Google Scholar 

  • Gorenstein C, Bundman MC, Lew PJ, Olds JL, Ribak CE (1985) Dendritic transport. I. Colchicine stimulates the transport of lysosomal enzymes from cell bodies to dendrites. J Neurochem 5:2009–2017

    Google Scholar 

  • Haeusler G, Osterwalder R (1980) Evidence suggesting a transmitter or neuromodulatory role for substance P at the first synapse of the baroreceptor reflex. Naunyn-Schmiedebergs Arch Pharmacol 314:111–121

    Google Scholar 

  • Helke CJ, O'Donohue TL, Jacobowitz DM (1980) Substance P as a baro- and chemoreceptor afferent neurotransmitter: immunocytochemical and neurochemical evidence in the rat. Peptides 1:1–9

    Google Scholar 

  • Heym C, Lang R (1985) Transmitters in sympathetic postganglionic neurons. In: Panula P, Päivärinta H, Soinila S (eds) Neurohistochemistry today. Alan R Liss, New York, pp 123–157

    Google Scholar 

  • Hökfelt T, Kellerth JO, Nilsson G, Pernow B (1975) Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res 100:235–252

    Google Scholar 

  • Hökfelt T, Elde R, Johansson O, Luft R, Nilsson G, Arimura A (1976) Immunohistochemical evidence for separate populations of somatostatin-containing and substance P-containing primary afferent neurons. Neuroscience 1:131–136

    Google Scholar 

  • Hökfelt T, Johansson O, Kellerth JO, Ljungdahl A, Nilsson G, Nygards A, Pernow B (1977a) Immunohistochemical distribution of substance P. In: von Euler US, Pernow B (eds) Substance P. Raven Press, New York, pp 117–145

    Google Scholar 

  • Hökfelt T, Ljungdahl A, Terenius L, Elde R, Nilsson G (1977b) Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: enkephalin and substance P. Proc Natl Acad Sci USA 74:3081–3085

    Google Scholar 

  • Horikawa S, Takai T, Toyosato M, Takahashi H, Noda M, Kakidani H, Kubo T, Hirose T, Inayama S, Hayashida H, Miyata T, Numa S (1983) Isolation and structural organization of the human prepro enkephalin B gene. Nature 306:611–614

    Google Scholar 

  • Jancso G, Hökfelt T, Lundberg JM, Kiraly E, Halasz N, Nilsson G, Terenius L, Rehfeld J, Steinbusch H, Verhofstad A, Elde R, Said S, Brown M (1981) Immunohistochemical studies on the effect of capsaicin on spinal and medullary peptide and monoamine neurons using antisera to substance P, gastrin/CCK, somatostatin, VIP, enkephalin, neurotensin and 5-hydroxytryptamine. J Neurocytol 10:963–980

    Google Scholar 

  • Johansson O (1978) Localization of somatostatin-like immunoreactivity in the Golgi apparatus of central and peripheral neurons. Histochemistry 58:167–176

    Google Scholar 

  • Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine β-neoendorphin/dynorphin precursor. Nature (London) 298:245–249

    Google Scholar 

  • Katz DM, Karten HJ (1980) Substance P in the vagal sensory ganglia: localization in cell bodies and pericellular arborizations. J Comp Neurol 193:549–564

    Google Scholar 

  • Lang RE, Hermann K, Dietz R, Gaida W, Ganten D, Kraft K, Unger T (1983) Evidence for the presence of enkephalins in the heart. Life Sci 32:399–406

    Google Scholar 

  • Lee Y, Kawai Y, Shiosaka S, Takami K, Kijama H, Hillyard CJ, Girgis S, MacIntyre I, Emson PC, Tohyama M (1985) Coexistence of calcitonin gene-related peptide and substance P-like peptides in single cells of the trigeminal ganglion of the rat: immunohistochemical analysis. Brain Res 330:194–196

    Google Scholar 

  • Lehtosalo JI, Uusitalo H, Stjernschantz J, Palkama A (1984) Substance P-like immunoreactivity in the trigeminal ganglion. A fluorescence, light and electron microscope study. Histochemistry 80:421–427

    Google Scholar 

  • Lembeck F (1953) Zur Frage der zentralen Übertragung afferenter Impulse. III. Mitteilung. Das Vorkommen und die Bedeutung der Substanz P in den dorsalen Wurzeln des Rückenmarks. Naunyn Schmiedebergs Arch Pharmacol 219:197–213

    Google Scholar 

  • Lembeck F, Holzer P (1979) Substance P as the neurogenic mediator of antidromic vasodilatation and neurogenic plasma extravasation. Naunyn Schmiedebergs Arch Pharmacol 310:175–183

    Google Scholar 

  • Lembeck F, Donnerer J, Bartho L (1982) Inhibition of neurogenic vasodilatation and plasma extravasation by substance P antagonists, somatostatin and (D-met2, pro5) enkephalinamide. Eur J Pharmacol 85:171–176

    Google Scholar 

  • Lukas Z, Cech S, Burianed P (1970) Cholinesterase and biogenic monoamines in ganglion semilunare (Gasseri) Histochemie 22:163–168

    Google Scholar 

  • Lundberg JM, Hökfelt T, Nilsson G, Terenius L, Rehfeld J, Elde R, Said S (1978) Peptide neurons in the vagus, splanchnic and sciatic nerves. Acta Physiol Scand 104:499–501

    Google Scholar 

  • Maysinger D, Höllt V, Seizinger BR, Mehraein P, Pasi A, Herz A (1982) Parallel distribution of immunoreactive α-neo-endorphin and dynorphin in rat and human tissue. Neuropeptides 2:211–225

    Google Scholar 

  • Nagy JI, Daddona PE (1985) Anatomical and cytochemical relationships of adenosine deaminase-containing primary afferent neurons in the rat. Neuroscience 15:799–813

    Google Scholar 

  • Owman C, Santini M (1966) Adrenergic nerves in spinal ganglia of the cat. Acta Physiol Scand 68:127–128

    Google Scholar 

  • Payan DG, Brewster DR, Goezl E (1983) Specific stimulation of human T lymphocytes by substance P. J Immunol 131:1613–1615

    Google Scholar 

  • Price J (1985) An immunohistochemical and quantitative estimation of dorsal root ganglion neuronal subpopulations. J Neurosci 5:2051–2059

    Google Scholar 

  • Ruff MR, Wahl SM, Mergenhagen S, Pert CB (1985) Opiate receptor-mediated chemotoxis of human monocytes. Neuropeptides 5:363–366

    Google Scholar 

  • Santini M (1966) Adrenergic fibres in the feline Gasserian ganglion. Life Sci 5:283–287

    Google Scholar 

  • Sharp BM, Keane WF, Suh HJ, Gekker G, Tsukayama D, Peterson PK (1985) Opioid peptides rapidly stimulate superoxide production by human polymorphonuclear leukocytes and macrophages. Endocrinology 177:793–795

    Google Scholar 

  • Skofitsch G, Zamir N, Helke CJ, Savitt JM, Jacobowitz DM (1985) Corticotropin releasing factor-like immunoreactivity in sensory ganglion and capsaicin sensitive neurons of the rat central nervous system: colocalization with other neuropeptides. Peptides 6:307–318

    Google Scholar 

  • Smith TW, Buchan P (1984) Peripheral opioid receptors located on the rat saphenous nerve. Neuropeptides 5:217–220

    Google Scholar 

  • Solloway MR, Stjernschantz J, Sears M (1981) The miotic effect of substance P on the isolated rabbit iris. Invest Ophthalmol Vis Sci 20:47–52

    Google Scholar 

  • Sternberger LA, Hardy PH, Curculis JJ, Meyer HG (1970) The unlabelled antibody enzyme method of immunohistochemistry. J Histochem Cytochem 18:315–333

    Google Scholar 

  • Stjernschantz J, Sears M, Stjernschantz L (1981) Intraocular effects of substance P in the rabbit. Invest Ophthalmol Vis Sci 20:53–60

    Google Scholar 

  • Sweetnam PM, Neale JH, Barker JL, Goldstein A (1982) Localization of immunoreactive dynorphin in neurons cultured from spinal cord and dorsal root ganglia. Proc Natl Acad Sci USA 79:6742–6746

    Google Scholar 

  • Weber E, Roth KA, Barchas JD (1982) Immunohistochemical distribution of α-neo-endorphin/dynorphin neuronal systems in rat brain: evidence for colocalization. Proc Natl Acad Sci USA 79: 3062–3066

    Google Scholar 

  • Weihe E, Hartschuh W, Weber E (1985) Prodynorphin opioid peptides in small somatosensory primary afferents of guinea pig. Neurosci Lett 58:347–352

    Google Scholar 

  • Wolf GK (1980) Klinische Forschung mittels verteilungsunabhängiger Methoden. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Xiang JZ, Archelos J, Lang RE (1984) Enkephalins in the heart. Clin Exp [Theory and Practice] A6/10 + 11:1883–1888

    Google Scholar 

  • Zamir N, Palkovitz M, Weber E, Mezey E, Brownstein MJ (1984) A dynorphinergic pathway of Leu-enkephalin production in substantia nigra. Nature (London) 307:643–645

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kummer, W., Heym, C. Correlation of neuronal size and peptide immunoreactivity in the guinea-pig trigeminal ganglion. Cell Tissue Res. 245, 657–665 (1986). https://doi.org/10.1007/BF00218569

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00218569

Key words

Navigation