Skip to main content
Log in

Neurochemical Features of Metasympathetic System Ganglia in the Course of Ontogenesis

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The neurochemical composition of the metasympathetic nervous system is characterized by large variation. The majority of ganglionic neurons in metasympathetic system is cholinergic. Along with cholinergic neurons, there are neurons detected in the intramural ganglia containing serotonin, histamine, GABA, and several peptides: cholecystokinin, dynorphin, enkephalins, galanin, gastrin-releasing peptide (bombesin in mammals), neuropeptide Y, neurotensin, somatostatin, tachykinins, neurokinin A, vasoactive intestinal polypeptide, and calcitonin gene-related peptide. Gas molecules such as NO, CO, and H2S also act as neurotransmitters. Separate groups of neurons differ in the content of neuronal calcium-binding proteins, such as calbindin, calretinin and parvalbumin, and of neurofilaments: those of low, medium, and high molecular weight. Neurons of the gastrointestinal ganglia are the most diverse in their neurochemistry. There is species specificity: there are more combinations of chemical mediators in the ganglia of large animals and humans. The synthesis of main neurotransmitters takes place already in embryonic period, and most neurons contain acetylcholine by the time of birth. In postnatal ontogenesis in intramural gastrointestinal and cardiac ganglia, the fraction of neurons expressing NO-synthase decreases. The functional meaning of such changes remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashmarin, I.P. and Stukalov, P.V., Neirokhimiya (Neurochemistry), Moscow: Inst. Biomed. Khim., Ross. Akad. Med. Nauk, 1996.

    Google Scholar 

  2. Gusev, N.B., Intracellular Ca-binding proteins. Part 1: Classification and structure, Soros. Obraz. Zh., 1998, no. 5, pp. 2–9.

    Google Scholar 

  3. Emanuilov, A.I., Moiseev, K.Yu., Filippov, I.V., and Maslyukov, P.M., Developmental characteristics of neurons in the intramural ganglia of the small intestine containing different types of calcium-binding proteins, Neurosci. Behav. Physiol., 2015, vol. 45, no. 9, pp. 986–990.

    Article  CAS  Google Scholar 

  4. Maslyukov, P.M., Emanuilov, A.I., and Nozdrachev, A.D., Age changes in neurotransmitter composition of sympathetic neurons, Usp. Gerontol., 2016, vol. 29, no. 3, pp. 442–453.

    Google Scholar 

  5. Maslyukov, P.M., Nozdrachev, A.D., and Emanuilov, A.I., Age-related features in expression of calcium- binding proteins in autonomic ganglionic neurons, Adv. Gerontol., 2016, vol. 6, no. 4, pp. 298–303.

    Article  Google Scholar 

  6. Maslyukov, P.M., Korzina, M.B., Emanuilov, A.I., and Shilkin, V.V., Neurotransmitter composition of neurons in the cranial cervical and celiac sympathetic ganglia in postnatal ontogenesis, Neurosci. Behav. Physiol., 2010, vol. 40, no. 2, pp. 143–147.

    Article  CAS  PubMed  Google Scholar 

  7. Nozdrachev, A.D. and Masliukov, P.M., Neuropeptide Y and autonomic nervous system, J. Evol. Biochem. Physiol., 2011, vol. 47, no. 2, pp. 121–130.

    Article  CAS  Google Scholar 

  8. Nozdrachev, A.D. and Maslyukov, P.M., Vozrastnoe razvitie neironov avtonomnykh gangliev (Age Development of Neurons in Autonomous Ganglia), St. Petersburg: Inform-Navigator, 2014.

    Google Scholar 

  9. Nozdrachev, A.D. and Yantsev, A.V., Avtonomnaya peredacha (Autonomous Transmission), St. Petersburg: St.-Peterb. Gos. Univ., 1995.

    Google Scholar 

  10. Permyakov, E.A., Kal’tsii-svyazyvayushchie belki (Calcium-Binding Proteins), Moscow: Nauka, 1993.

    Google Scholar 

  11. Permyakov, E.A., Metall-svyazyvayushchie belki: struktura, svoistva, funktsii (Metal-Binding Proteins: Structure, Properties, and Functions), Moscow: Nauchnyi Mir, 2012.

    Google Scholar 

  12. Porseva, V.V., Smirnova, V.P., Korzina, M.B., Emanuilov, A.I., and Masliukov, P.M., Age-associated changes in sympathetic neurons containing neurofilament 200 kDa during chemical deafferentation, Bull. Exp. Biol. Med., 2013, vol. 155, no. 2, pp. 268–271.

    Article  CAS  PubMed  Google Scholar 

  13. Porseva, V.V., Shilkin, V.V., Strelkov, A.A., and Maslyukov, P.M., Calbindin-containing neurons in the ventral horn of the gray matter of the spinal cord in mice, Neurosci. Behav. Physiol., 2015, vol. 45, no. 6, pp. 710–714.

    Article  CAS  Google Scholar 

  14. Porseva, V.V., Shilkin, V.V., Korzina, M.B., Smirnova, V.P., and Maslyukov, P.M., Developmental changes in NF200+ neurons in sensory ganglia at different segmental levels on chemical differentiation, Neurosci. Behav. Physiol., 2013, vol. 43, no. 5, pp. 602–606.

    Article  CAS  Google Scholar 

  15. Chelyshev, Y.A., Raginov, I.S., Guseva, D.S., and Masgutov, R.F., Survival and phenotypic characteristics of axotomized neurons in spinal ganglia, Neurosci. Behav. Physiol., 2005, vol. 35, no. 5, pp. 457–460.

    Article  PubMed  Google Scholar 

  16. Shuklin, A.V. and Shvalev, V.N., Distribution of NOsynthase in human intracardiac nerve ganglia, Kardiologiya, 2006, no. 8, pp. 26–28.

    Google Scholar 

  17. Armour, J.A., Smith, F.M., Losier, A.M., et al., Modulation of intrinsic cardiac neuronal activity by nitric oxide donors induces cardiodynamic changes, Am. J. Physiol., 1995, vol. 268, no. 2, pp. R403–R413.

    CAS  PubMed  Google Scholar 

  18. Baimbridge, K.G., Celio, M.R., and Rogers, J.H., Calcium-binding proteins in the nervous system, Trends Neurosci., 1992, vol. 15, pp. 303–308.

    Article  CAS  PubMed  Google Scholar 

  19. Balemba, O.B., Mbassa, G.K., Semuguruka, W.D., et al., The topography, architecture and structure of the enteric nervous system in the jejunum and ileum of cattle, J. Anat., 1999, vol. 195, no. 1, pp. 1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barbiers, M., Timmermans, J.P., Adriaensen, D., et al., Topographical distribution and immunocytochemical features of colonic neurons that project to the cranial mesenteric ganglion in the pig, J. Auton. Nerv. Syst., 1993, vol. 44, nos. 2–3, pp. 119–127.

    Article  CAS  PubMed  Google Scholar 

  21. Bergner, A.J., Stamp, L.A., Gonsalvez, D.G., et al., Birthdating of myenteric neuron subtypes in the small intestine of the mouse, J. Comp. Neurol., 2014, vol. 522, no. 3, pp. 514–527.

    Article  CAS  PubMed  Google Scholar 

  22. Bloom, S.R. and Edwards, A.V., Vasoactive intestinal peptide in relation to atropine resistant vasodilatation in the submaxillary gland of the cat, J. Physiol., 1980, vol. 300, no. 1, pp. 41–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brack, K.E., The heart’s “little brain” controlling cardiac function in the rabbit, Exp. Physiol., 2015, vol. 100, no. 4, pp. 348–353.

    Article  CAS  PubMed  Google Scholar 

  24. Branchek, T.A. and Gershon, M.D., Time course of expression of neuropeptide Y, calcitonin gene-related peptide, and NADPH diaphorase activity in neurons of the developing murine bowel and the appearance of 5-hydroxytryptamine in mucosal enterochromaffin cells, J. Comp. Neurol., 1989, vol. 285, no. 2, pp. 262–273.

    Article  CAS  PubMed  Google Scholar 

  25. Brehmer, A., The Value of Neurofilament-Immunohistochemistry for Identifying Enteric Neuron Types—Special Reference to Intrinsic Primary Afferent (Sensory) Neurons: New Research on Neurofilament Proteins, New York: Nova Science, 2007.

    Google Scholar 

  26. Brehmer, A., Schrödl, F., and Neuhuber, W., Morphological phenotyping of enteric neurons using neurofilament immunohistochemistry renders chemical phenotyping more precise in porcine ileum, Histochem. Cell Biol., 2002, vol. 117, no. 3, pp. 257–263.

    Article  CAS  PubMed  Google Scholar 

  27. Brown, D.R. and Timmermans, J.P., Lessons from the porcine enteric nervous system, Neurogastroenterol. Motil., 2004, vol. 16, suppl. 1, pp. 50–54.

    Article  PubMed  Google Scholar 

  28. Burnstock, G., Purinergic signaling in the gut, Adv. Exp. Med. Biol., 2016, vol. 891, pp. 91–112.

    Article  CAS  PubMed  Google Scholar 

  29. Chalazonitis, A., Pham, T.D., Li, Z.S., et al., Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: Relationship to timing of cell cycle exit, J. Comp. Neurol., 2008, vol. 509, no. 5, pp. 474–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cochard, P., Goldstein, M., and Black, I.B., Ontogenetic appearance and disappearance of tyrosine hydroxylase and catecholamines in the rat embryo, Proc. Natl. Acad. Sci. U.S.A., 1978, vol. 75, no. 6, pp. 2986–2990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Costa, M., Furness, J.B., and Gibbins, I.L., Chemical coding of enteric neurons, Prog. Brain Res., 1986, vol. 68, pp. 217–239.

    Article  CAS  PubMed  Google Scholar 

  32. Crist, J.R., He, X.D., and Goyal, R.K., Both ATP and the peptide VIP are neurotransmitters in guinea-pig ileum circular muscle, J. Physiol., 1992, vol. 447, pp. 119–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crossley, D. and Altimiras, J., Ontogeny of cholinergic and adrenergic cardiovascular regulation in the domestic chicken (Gallus gallus), Am. J. Physiol., 2000, vol. 279, no. 3, pp. R1091–R1098.

    CAS  Google Scholar 

  34. Dey, R.D. and Zhu, W., Origin of galanin in nerves of cat airways and colocalization with vasoactive intestinal peptide, Cell Tissue Res., 1993, vol. 273, no. 1, pp. 193–200.

    Article  CAS  PubMed  Google Scholar 

  35. Dey, R.D., Mayer, B., and Said, S.I., Colocalization of vasoactive intestinal peptide and nitric oxide synthase in neurons of the ferret trachea, Neuroscience, 1993, vol. 54, no. 4, pp. 839–843.

    Article  CAS  PubMed  Google Scholar 

  36. Dey, R.D., Altemus, J.B., Rodd, A., et al., Neurochemical characterization of intrinsic neurons in ferret tracheal plexus, Am. J. Respir. Cell Mol. Biol., 1996, vol. 14, no. 3, pp. 207–216.

    Article  CAS  PubMed  Google Scholar 

  37. Eaker, E.Y., Neurofilament and intermediate filament immunoreactivity in human intestinal myenteric neurons, Dig. Dis. Sci., 1997, vol. 42, no. 9, pp. 1926–1932.

    Article  CAS  PubMed  Google Scholar 

  38. Eaker, E.Y. and Sallustio, J.E., The distribution of novel intermediate filament proteins defines subpopulations of myenteric neurons in rat intestine, Gastroenterology, 1994, vol. 107, pp. 666–674.

    Article  CAS  PubMed  Google Scholar 

  39. El-Bermani, A.W. and Bloomquist, E.I., Acetylcholinesterase- and norepinephrine-containing nerves in developing rat lung, J. Embryol. Exp. Morphol., 1978, vol. 48, no. 1, pp. 177–183.

    CAS  PubMed  Google Scholar 

  40. Erickson, C.S., Lee, S.J., Barlow-Anacker, A.J., et al., Appearance of cholinergic myenteric neurons during enteric nervous system development: comparison of different ChAT fluorescent mouse reporter lines, Neurogastroenterol. Motil., 2014, vol. 26, no. 6, pp. 874–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fahrenkrug, J., Vasoactive intestinal polypeptide: measurement, distribution and putative neurotransmitter function, Digestion, 1979, vol. 19, no. 3, pp. 149–169.

    Article  CAS  PubMed  Google Scholar 

  42. Fahrenkrug, J., Haglund, U., Jodal, M., et al., Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications, J. Physiol., 1978, vol. 284, pp. 291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fischer, A., Canning, B.J., and Kummer, W., Correlation of vasoactive intestinal peptide and nitric oxide synthase with choline acetyltransferase in the airway innervation, Ann. N.Y. Acad. Sci., 1996, vol. 805, no. 1, pp. 717–722.

    Article  CAS  PubMed  Google Scholar 

  44. Furness, J.B., Types of neurons in the enteric nervous system, J. Auton. Nerv. Syst., 2000, vol. 81, no. 1, pp. 87–96.

    Article  CAS  PubMed  Google Scholar 

  45. Furness, J.B., The Enteric Nervous System, Oxford: Blackwell, 2006.

    Google Scholar 

  46. Gordon, L., Polak, J.M., Moscoso, G.J., et al., Development of the peptidergic innervation of human heart, J. Anat., 1993, vol. 183, part 1, pp. 131–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Guembe, L. and Villaro, A.C., Histochemical demonstration of neuronal nitric oxide synthase during development of mouse respiratory tract, Am. J. Respir. Cell Mol. Biol., 1999, vol. 20, no. 2, pp. 342–351.

    Article  CAS  PubMed  Google Scholar 

  48. Hao, M.M. and Young, H.M., Development of enteric neuron diversity, J. Cell Mol. Med., 2009, vol. 13, no. 7, pp. 1193–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hao, M.M., Bornstein, J.C., and Young, H.M., Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP mice, J. Comp. Neurol., 2013, vol. 521, no. 14, pp. 3358–3370.

    Article  CAS  PubMed  Google Scholar 

  50. Hao, M.M., Moore, R.E., Roberts, R.R., et al., The role of neural activity in the migration and differentiation of enteric neuron precursors, Neurogastroenterol. Motil., 2010, vol. 22, no. 5, pp. e127–e137.

    CAS  PubMed  Google Scholar 

  51. Heizmann, C.W. and Braun, K., Changes in Ca(2+)- binding proteins in human neurodegenerative disorders, Trends Neurosci., 1992, vol. 15, no. 7, pp. 259–264.

    Article  CAS  PubMed  Google Scholar 

  52. Hildreth, V., Anderson, R.H., and Henderson, D.J., Autonomic innervation of the developing heart: origins and function, Clin. Anat., 2009, vol. 22, no. 1, pp. 36–46.

    Article  PubMed  Google Scholar 

  53. Hildreth, V., Webb, S., Bradshaw, L., Brown, N.A., et al., Cells migrating from the neural crest contribute to the innervations of the venous pole of the heart, J. Anat., 2008, vol. 212, no. 1, pp. 1–11.

    PubMed  PubMed Central  Google Scholar 

  54. Hoffman, P.N. and Lasek, R.J., The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol., 1975, vol. 66, no. 2, pp. 351–366.

    Article  CAS  PubMed  Google Scholar 

  55. Hökfelt, T., Broberger, C., Xu, Z.Q.D., et al., Neuropeptides— an overview, Neuropharmacology, 2000, vol. 39, no. 8, pp. 1337–1356.

    Article  PubMed  Google Scholar 

  56. Horackova, M., Slavikova, J., and Byczko, Z., Postnatal development of the rat intrinsic cardiac nervous system: a confocal laser scanning microscopy study in whole-mount atria, Tissue Cell, 2000, vol. 32, no. 5, pp. 377–388.

    Article  CAS  PubMed  Google Scholar 

  57. Jimenez, M., Hydrogen sulfide as a signaling molecule in the enteric nervous system, Neurogastroenterol. Motil., 2010, vol. 22, no. 11, pp. 1149–1153.

    Article  CAS  PubMed  Google Scholar 

  58. Jin, J.G., Katsoulis, S., Schmidt, W.E., and Grider, J.R., Inhibitory transmission in tenia coli mediated by distinct vasoactive intestinal peptide and apamin-sensitive pituitary adenylate cyclase activating peptide receptors, J. Pharmacol. Exp. Ther., 1994, vol. 270, no. 2, pp. 433–439.

    CAS  PubMed  Google Scholar 

  59. Klimaschewski, L., Kummer, W., Mayer, B., et al., Nitric oxide synthase in cardiac nerve fibers and neurons of rat and guinea pig heart, Circ. Res., 1992, vol. 71, no. 6, pp. 1533–1537.

    Article  CAS  PubMed  Google Scholar 

  60. Kustermann, A., Neuhuber, W., and Brehmer, A., Calretinin and somatostatin immunoreactivities label different human submucosal neuron populations, Anat. Rec. (Hoboken), 2011, vol. 294, no. 5, pp. 858–869.

    Article  CAS  Google Scholar 

  61. Li, L., Hatcher, J.T., Hoover, D.B., et al., Distribution and morphology of calcitonin gene-related peptide and substance P immunoreactive axons in the wholemount atria of mice, Auton. Neurosci., 2014, vol. 181, pp. 37–48.

    Article  CAS  PubMed  Google Scholar 

  62. Maeda, T., Fujimiya, M., Kitahama, K., et al., Serotonin neurons and their physiological roles, Arch. Histol. Cytol., 1989, vol. 52, suppl., pp. 113–120.

    Article  PubMed  Google Scholar 

  63. Masliukov, P.M., Korobkin, A.A., Nozdrachev, A.D., et al., Cal binding-D28k immunoreactivity in sympathetic ganglionic neurons during development, Auton. Neurosci., 2012, vol. 167, nos. 1–2, pp. 27–33.

    Article  CAS  PubMed  Google Scholar 

  64. Masliukov, P.M., Emanuilov, A.I., Moiseev, K., et al., Development of non-catecholaminergic sympathetic neurons in para- and prevertebral ganglia of cats, Int. J. Dev. Neurosci., 2015, vol. 40, pp. 76–84.

    Article  CAS  PubMed  Google Scholar 

  65. Masliukov, P.M., Moiseev, K., Budnik, A.F., et al., Development of calbindin- and calretinin-immunopositive neurons in the enteric ganglia of rats, Cell Mol. Neurobiol., 2016. doi 10.1007/s10571-016-0457-x

    Google Scholar 

  66. Masliukov, P.M., Moiseev, K., Emanuilov, A.I., et al., Development of neuropeptide Y-mediated heart innervation in rats, Neuropeptides, 2016, vol. 55, pp. 47–54.

    Article  CAS  PubMed  Google Scholar 

  67. Maslyukov, P.M., Nozdrachev, A.D., and Timmermans, J.P., Age-related characteristics of the neurotransmitter composition of neurons in the stellate ganglion, Neurosci. Behav. Physiol., 2007, vol. 37, no. 4, pp. 349–353.

    Article  CAS  PubMed  Google Scholar 

  68. Mazzuoli, G., Mazzoni, M., Albanese, V., et al., Morphology and neurochemistry of descending and ascending myenteric plexus neurons of sheep ileum, Anat. Rec., 2007, vol. 290, no. 12, pp. 1480–1491.

    Article  CAS  Google Scholar 

  69. McConalogue, K., Lyster, D.J.K., and Furness, J.B., Electrophysiological analysis of the actions of pituitary adenylyl cyclase activating peptide in the taenia of the guinea-pig caecum, Naunyn-Schmiedeberg’s Arch. Pharmacol., 1995, vol. 352, no. 5, pp. 538–544.

    Article  CAS  Google Scholar 

  70. Mongardi Fantaguzzi, C., Thacker, M., Chiocchetti, R., et al., Identification of neuron types in the submucosal ganglia of the mouse ileum, Cell Tissue Res., 2009, vol. 336, no. 2, pp. 179–189.

    Article  CAS  PubMed  Google Scholar 

  71. Morris, J.L., Gibbins, I.L., Kadowitz, P.J., et al., Roles of peptides and other substances in cotransmission from vascular autonomic and sensory neurons, Can. J. Physiol. Pharmacol., 1995, vol. 73, no. 5, pp. 521–532.

    Article  CAS  PubMed  Google Scholar 

  72. Myers, A.C., Anatomical characteristics of tonic and phasic postganglionic neurons in guinea pig bronchial parasympathetic ganglia, J. Comp. Neurol., 2000, vol. 419, no. 4, pp. 439–450.

    Article  CAS  PubMed  Google Scholar 

  73. Parsons, R.L., Locknar, S.A., Young, B.A., et al., Presence and co-localization of vasoactive intestinal polypeptide with neuronal nitric oxide synthase in cells and nerve fibers within guinea pig intrinsic cardiac ganglia and cardiac tissue, Cell Tissue Res., 2006, vol. 323, no. 2, pp. 197–209.

    Article  CAS  PubMed  Google Scholar 

  74. Patel, B.A., Dai, X., Burda, J. E., et al., Inhibitory neuromuscular transmission to ileal longitudinal muscle predominates in neonatal guinea pigs, Neurogastroenterol. Motil., 2010, vol. 22, no. 8, pp. e909–e918.

    Article  CAS  Google Scholar 

  75. Perrone Capano, C., Pernas-Alonso, R., and di Porzio, U., Neurofilament homeostasis and motoneurone degeneration, BioEssays, 2001, vol. 23, no. 1, pp. 24–33.

    Article  CAS  PubMed  Google Scholar 

  76. Phillips, R.J., Kieffer, E.J., and Powley, T.L., Aging of the myenteric plexus: neuronal loss is specific to cholinergic neurons, Auton. Neurosci., 2003, vol. 106, no. 2, pp. 69–83.

    Article  PubMed  Google Scholar 

  77. Qu, Z.D., Thacker, M., Castelucci, P., et al., Immunohistochemical analysis of neuron types in the mouse small intestine, Cell Tissue Res., 2008, vol. 334, no. 2, pp. 147–161.

    Article  CAS  PubMed  Google Scholar 

  78. Rattan, S. and Chakder, S., Effect of COon internal anal sphincter heme oxygenase inhibitor inhibits NANC relaxation, Am. J. Physiol., 1993, vol. 265, no. 4, pp. G799–G804.

    CAS  PubMed  Google Scholar 

  79. Reiche, D. and Schemann, M., Ascending choline acetyltransferase and descending nitric oxide synthase immunoreactive neurons of the myenteric plexus project to the mucosa of the guinea pig gastric corpus, Neurosci. Lett., 1998, vol. 241, no. 1, pp. 61–64.

    Article  CAS  PubMed  Google Scholar 

  80. Richardson, R.J., Grkovic, I., and Anderson, C.R., Immunohistochemical analysis of intracardiac ganglia of the rat heart, Cell Tissue Res., 2003, vol. 314, no. 3, pp. 337–350.

    Article  CAS  PubMed  Google Scholar 

  81. Richardson, R.J., Grkovic, I., Allen, A.M., et al., Separate neurochemical classes of sympathetic postganglionic neurons project to the left ventricle of the rat heart, Cell Tissue Res., 2006, vol. 324, no. 1, pp. 9–16.

    Article  CAS  PubMed  Google Scholar 

  82. Rivera, L.R., Thacker, M., and Furness, J.B., Highand medium-molecular-weight neurofilament proteins define specific neuron types in the guinea-pig enteric nervous system, Cell Tissue Res., 2009, vol. 335, no. 3, pp. 529–538.

    Article  CAS  PubMed  Google Scholar 

  83. Rothman, T.P. and Gershon, M.D., Phenotypic expression in the developing murine enteric nervous system, J. Neurosci., 1982, vol. 2, no. 3, pp. 381–393.

    Article  CAS  PubMed  Google Scholar 

  84. Rothman, T.P., Nilaver, G., and Gershon, M.D., Colonization of the developing murine enteric nervous system and subsequent phenotypic expression by the precursors of peptidergic neurons, J. Comp. Neurol., 1984, vol. 225, no. 1, pp. 13–23.

    Article  CAS  PubMed  Google Scholar 

  85. Rysevaite, K., Saburkina, I., Pauziene, N., et al., Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations, Heart Rhythm., 2011, vol. 8, no. 5, pp. 731–738.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Sang, Q. and Young, H.M., Chemical coding of neurons in the myenteric plexus and external muscle of the small and large intestine of the mouse, Cell Tissue Res., 1996, vol. 284, no. 1, pp. 39–53.

    Article  CAS  PubMed  Google Scholar 

  87. Sawant, L.A., Hasgekar, N.N., and Vyasarayani, L.S., Developmental expression of neurofilament and glial filament proteins in rat cerebellum, Int. J. Dev. Biol., 1994, vol. 38, no. 3, pp. 429–437.

    CAS  PubMed  Google Scholar 

  88. Sayegh, A.I. and Ritter, R.C., Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-, calretinin-, calbindin-, and neurofilament-Mimmunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine, Anat. Rec., Part A, 2003, vol. 271, no. 1, pp. 209–216.

    Article  CAS  Google Scholar 

  89. Schwaller, B., The continuing disappearance of “pure” Ca2+ buffers, Cell. Mol. Life Sci., 2009, vol. 66, pp. 275–300.

    Article  CAS  PubMed  Google Scholar 

  90. Schwaller, B., Meyer, M., and Schiffmann, S., “New” functions for “old” proteins: the role of the calciumbinding proteins calbindin D-28k, calretinin, and parvalbumin, in cerebellar physiology. Studies with knockout mice, Cerebellum, 2002, vol. 1, no. 4, pp. 241–258.

    Article  CAS  PubMed  Google Scholar 

  91. Shoba, T. and Tay, S.S., Nitrergic and peptidergic innervations in the developing rat heart, Anat. Embryol., 2000, vol. 201, no. 6, pp. 491–500.

    Article  CAS  PubMed  Google Scholar 

  92. Schuman, E.M. and Madison, D.V., Nitric oxide and synaptic function, Ann. Rev. Neurosci., 1994, vol. 17, no. 1, pp. 153–183.

    Article  CAS  PubMed  Google Scholar 

  93. Steele, P.A., Gibbins, I.L., Morris, J.L., et al., Multiple populations of neuropeptide-containing intrinsic neurons in the guineapig heart, Neuroscience, 1994, vol. 62, no. 1, pp. 241–250.

    Article  CAS  PubMed  Google Scholar 

  94. Timmermans, J.-P., Adriaensen, D., Cornelissen, W., et al., Structural organization and neuropeptide distribution in the mammalian enteric nervous system, with special attention to those components involved inmucosal reflexes, Comp. Biochem. Physiol., 1997, vol. 118, no. 2, pp. 331–340.

    Article  CAS  Google Scholar 

  95. Timmermans, J.P., Barbiers, M., Scheuermann, D.W., et al., Distribution pattern, neurochemical features and projections of nitrergic neurons in the pig small intestine, Ann. Anat., 1994, vol. 176, no. 6, pp. 515–525.

    Article  CAS  PubMed  Google Scholar 

  96. Vannucchi, M.G. and Faussone-Pellegrini, M.S., Differentiation of cholinergic cells in the rat gut during pre- and postnatal life, Neurosci. Lett., 1996, vol. 206, no. 2, pp. 105–108.

    Article  CAS  PubMed  Google Scholar 

  97. Wester, T., O’Briain, S., and Puri, P., Morphometric aspects of the submucous plexus in whole-mount preparations of normal human distal colon, J. Pediatr. Surg., 1998, vol. 33, no. 4, pp. 619–622.

    Article  CAS  PubMed  Google Scholar 

  98. Wilhelm, M., Lawrence, J.J., and Gábriel, R., Enteric plexuses of two choline-acetyltransferase transgenic mouse lines: chemical neuroanatomy of the fluorescent protein-expressing nerve cells, Brain Res. Bull., 2015, vol. 111, pp. 76–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu, M., Nassauw, L.V., Kroese, A.B.A., et al., Myenteric nitrergic neurons along the rat esophagus: evidence for regional and strain differences in agerelated changes, Histochem. Cell Biol., 2003, vol. 119, no. 5, pp. 395–403.

    CAS  PubMed  Google Scholar 

  100. Xue, L., Farrugia, G., Miller, S.M., et al., Carbon monoxide and nitric oxide as coneurotransmitters in the enteric nervous system: evidence from genomic deletion of biosynthetic enzymes, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 4, pp. 1851–1855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Young, H.M. and Ciampoli, D., Transient expression of neuronal nitric oxide synthase by neurons of the submucous plexus of the mouse small intestine, Cell Tissue Res., 1998, vol. 291, no. 3, pp. 395–401.

    Article  CAS  PubMed  Google Scholar 

  102. Young, H.M., Jones, B.R., and McKeown, S.J., The projections of early enteric neurons are influenced by the direction of neural crest cell migration, J. Neurosci., 2002, vol. 22, no. 14, pp. 6005–6018.

    Article  CAS  PubMed  Google Scholar 

  103. Zhao, H., Sovadinova, I., Swope, V.M., et al., Postnatal development of the serotonin signaling system in the mucosa of the guinea pig ileum, Neurogastroenterol. Motil., 2011, vol. 23, pp. 161–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Masliukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masliukov, P.M., Budnik, A.F. & Nozdrachev, A.D. Neurochemical Features of Metasympathetic System Ganglia in the Course of Ontogenesis. Adv Gerontol 7, 281–289 (2017). https://doi.org/10.1134/S2079057017040087

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057017040087

Keywords

Navigation