Skip to main content
Log in

Fluid modeling of magnetized plasmas

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The simplified description given by fluid models of magnetized plasmas makes it possible to simulate large scale problems such as the interaction of the solar wind with the earth's magnetic field. However, the accurate numerical solution of the fluid equations is made more difficult by the singular nature of the flow when magnetic reconnection occurs. During substorms, for example, details of small features of the flow in the magnetotail appear to cause changes in the global solutions. New methods for treating singular problems have been developed. Some of these are reviewed, including adaptive meshes and other tricks taken from fluid calculations. Several illustrative problems are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brackbill, J.U. (1982), “Numerical modeling of magnetospheric reconnection”, LAUR 82-483, Los Alamos National Laboratory.

  • Brackbill, J.U. and J. S. Saltzman, (1982), “Adaptive zoning for singular problems in two dimensions”, J. Comp. Phys., 46, 342.

    MathSciNet  Google Scholar 

  • Brackbill, J.U., D.W. Forslund, K.B. Quest, and D. Winske (1984), “Nonlinear evolution of the lower-hybrid drift instability”, Phys. Fluids 27, 2682.

    Article  ADS  Google Scholar 

  • Forslund, D.W., K. B. Quest, J. U. Brackbill and K. Lee, (1984), “Collisionless dissipation in quasi-perpendicular shocks”, J. Geophys. Resch., 89, 2142.

    ADS  Google Scholar 

  • Gosling, J.T., D. N. Baker and E. W. Hones, (1984), “Journeys of a spacecraft”, Los Alamos Science, 10, 33.

    Google Scholar 

  • Hirt, C.W., (1968), “Heuristic stability”, J. Comput. Phys. 2, 339.

    MATH  Google Scholar 

  • Levy, R.H., H.E. Petschek, and G.L. Siscoe, (1964), “Aerodynamic aspects of the magnetospheric flow”, AIAA Journal 2, 2065.

    Google Scholar 

  • Lyon, J.S., S. H. Brecht, J. D. Huba, J.A. Fedder, and P. J. Palmadesso, (1981), “Computer simulation of a geomagnetic substorm”, Phys. Rev. Lett., 46, 1038.

    Article  ADS  Google Scholar 

  • Lyon, J.S., S.H. Brecht, J.A. Fedder, and P. Palmadesso (1980), “The effects on the earth's magnetotail from shocks in the solar wind”, Geo. Rsch. Lett. 7, 721.

    ADS  Google Scholar 

  • Petschek, H.E. (1964), “Magnetic field annihilation”, AAS-NASA Symposium on the Physics of Solar Flares, W.N. Hess ed., NASA SP-50.

  • Quest, K.B., D. W. Forslund, J. U. Brackbill and K. Lee, (1983), “Collisionless dissipation in quasi-parallel shocks”, Geophys. Resch. Lett., 10, 471.

    ADS  Google Scholar 

  • Richtmyer, R.D. and K.W. Morton (1967), “Difference methods for initial-value problems”, Interseience, New York.

    Google Scholar 

  • Sato, T. and T. Hayoski (1979), “Externally driven magnetic reconnection and a powerful magnetic energy converter,” Phys. Fluids 22, 1189.

    Article  ADS  Google Scholar 

  • Walker, R. (1983), “Modeling planetary magnetospheres”, Rept. No. 2352, UCLA Institute of Geophysics and Planetary Physics.

  • Wu, C.C., R.J. Walker and J.M. Dawson (1981), “A three-dimensional MHD model of the earth's magnetosphere”, Geophys. Rseh. Lett. 8, 523.

    ADS  Google Scholar 

  • Zalesak, S.T. (1979), J. Comput. Phys. 31, 335.

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brackbill, J. Fluid modeling of magnetized plasmas. Space Sci Rev 42, 153–167 (1985). https://doi.org/10.1007/BF00218230

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00218230

Keywords

Navigation