Skip to main content
Log in

Histochemistry of sarcoplasmic reticulum Ca-ATPase using dysprosium as capturing reagent

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

This report describes the development of a histochemical method for the demonstration of sarcoplasmic reticulum Ca-ATPase activity in cross-sections of skeletal muscle. The demonstration of sarcoplasmic reticulum Ca-ATPase activity is complicated by the fact that capturing reagents for phosphate inhibit the enzyme. We present a minimal model for heavy-metal-phosphate precipitation reactions which gives a theoretical description of the effect of enzyme inhibition on the rate of phosphate precipitation in the section. The model indicates that the choice of capturing reagent is crucial: whether or not ATPase activity can be demonstrated depends mainly on the inhibition constant and the solubility product of the phosphate salt of the capturing reagent (but also on a fairly large number of other factors). All lanthanides tested can be used to demonstrate sarcoplasmic reticulum Ca-ATPase activity, but dysprosium results in the highest staining intensity. This suggests that dysprosium inhibits sarcoplasmic reticulum Ca-ATPase to a lesser degree than the other lanthanides and/or the solubility product of its phosphate salt is smaller. As an example, the method is used to investigate the effect of thyroid hormone on sarcoplasmic reticulum Ca-ATPase activity in individual fibres of the rat soleus muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • barry, p. h. & diamond, j. m. (1984) Effects of unstirred layers on membrane phenomena. Physiol. Rev. 64, 763–872.

    Google Scholar 

  • herman, m. c., mcintosh, d. b. & kench, j. e. (1977) Proton inactivation of Ca2+ transport by sarcoplasmic reticulum. J. Biol. Chem. 252, 994–1001.

    Google Scholar 

  • blanco, c. e. & sieck, g. c. (1992) Quantitative determination of calcium-activated myosin adenosine triphosphatase activity in rat skeletal muscle fibres. Histochem. J. 24, 431–44.

    Google Scholar 

  • briggs, n. f., lee, k. f., feher, j. j., Wechsler, a. s., ohlendieck, k. & campbell, k. (1990) Ca-ATPase isozyme expression in sarcoplasmic reticulum is altered by chronic stimulation of muscle. FEBS Lett. 259, 269–72.

    Google Scholar 

  • buschman, H. P. J., Stienen, G. J. M., Van Der Laarse, W. J. & elzinga, G. (1996) Activationand tension-related heat in single slow- and fasttwitch muscle fibers from Xenopus laevis. (submitted).

  • butcher, r. g. (1983) Enzyme histochemistry of the myocardium. In Cardiac Metabolism (edited by drake-Holland, a. j. & noble, m. i. m.). pp. 445–69. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  • dejong, a. S. h. (1982) Mechanisms of metal-salt methods in enzyme cytochemistry with special reference to acid phosphatase. Histochem. J. 14, 1–33.

    Google Scholar 

  • edman, k. a. p., reggiani, c., schiaffino, s. & t.E. Kronnie, g. (1988) Maximum velocity of shortening related to myosin isoform composition in frog skeletal muscles fibres. J. Physiol. 395, 679–94.

    Google Scholar 

  • fujimori, t. & jencks, W. p. (1990) Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion. J. Biol. Chem. 265, 16262–70.

    Google Scholar 

  • guth, l. & samaha, f. j. (1969) Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Exp. Neurol. 25, 138–52.

    Google Scholar 

  • hechtenberg, s. & beyersmann, d. (1991) Inhibition of sarcoplasmic reticulum Ca2+-ATPase activity by cadmium, lead and mercury. Enzyme 45, 109–15.

    Google Scholar 

  • hill, a. v. (1965) Trails and Trials in Physiology, pp. 216–7. London: Edward Arnold Ltd.

    Google Scholar 

  • homsher, e. & kean, c. j. (1978) Skeletal muscle energetics and metabolism. Annu. Rev. Physiol. 40, 93–131.

    Google Scholar 

  • jorgenson, a. o., kalnins, v. & maclennan, d. h. (1979) Localization of sarcoplasmic reticulum protein in rat skeletal muscle by immunofluorescence. J. Cell Biol. 80, 372–84.

    Google Scholar 

  • jorgenson, a. o., arnold, w., pepper, d. r., kahl, s. d., mandel, f. & campbell, k. p. (1988) A monoclonal antibody to the Ca2+ ATPase of cardiac sarcoplasmic reticulum cross-reacts with slow type I but not with fast type II canine skeletal muscle fibres: an immunocytochemical and immunochemical study. Cell Motil. Cytoskel. 9, 164–74.

    Google Scholar 

  • kahn, m. a. (1976) Histochemical characteristics of vertebrate striated muscle: a review. Prog. Histochem. Cytochem. 8, 1–47.

    Google Scholar 

  • krenács, t., molnar, e., dobó, e. & dux, l. (1989) Fibre typing using sarcoplasmic reticulum Ca2+-ATPase and myoglobin immunohistochemistry in rat gastrocnemius muscle. Histochem. J. 21, 145–55.

    Google Scholar 

  • lännergren, j. & smith, r. s. (1966) Types of muscle fibres in toad skeletal muscle. Acta Physiol. Scand. 68, 263–74.

    Google Scholar 

  • lytton, j., Westlin, m. & hanley, m. r. (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of pumps. J. Biol. Chem. 266, 17067–71.

    Google Scholar 

  • maier, a., leberer, e. & pette, d. (1986) Distribution of sarcoplasmic reticulum Ca-ATPase and of calsequestrin in rabbit and rat skeletal muscle fibres. Histochemistry 86, 63–69.

    Google Scholar 

  • meijer, a. E. f. h. (1970) Histochemical method for demonstration of myosin adenosine triphosphatase in muscle tissues. Histochemie 22, 51–8.

    Google Scholar 

  • morrison, J. F. & cleland, W. W. (1983) Lanthanideadenosine 5′-triphosphate complexes: determination of their dissociation constants and mechanisms of action as inhibitors of yeast hexokinase. Biochemistry 22, 5507–13.

    Google Scholar 

  • muller, a., van Derlinden, g. c., zuidwijk, m. j., simonides, W. s., van Derlaarse, W. j. & vanhardeveld, c. (1994) Differential effects of thyroid hormone on the expression of sarcoplasmic reticulum Ca2+-ATPase isoforms in rat skeletal muscle fibres. Biochem. Biophys. Res. Commun. 203, 1035–42.

    Google Scholar 

  • reynolds, e. s. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–12.

    Google Scholar 

  • schmalbruch, h. (1985) Handbook of Microscopic Anatomy II/6: Skeletal Muscle, pp. 95–107. Berlin: Springer Verlag.

    Google Scholar 

  • seidler, n. w., jona, i., vegh, m. & martonosi, a. (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264, 17816–23.

    Google Scholar 

  • simonides, W. s. & vanhardeveld, c. (1985) The effect of hypothyroidism on sarcoplasmic reticulum in fasttwitch muscle of the rate. Biochem. Biophys. Acta 844, 129–41.

    Google Scholar 

  • simonides, W. s. & vanhardeveld, c. (1990) An assay for sarcoplasmic reticulum Ca2+-ATPase activity in muscle homogenates. Anal. Biochem. 191, 321–31.

    Google Scholar 

  • simonides, W. s., van Derlinden, g. c. & vanhardeveld, c. (1990) Thyroid hormone differentially affects mRNA levels of Ca-ATPase isozymes of sarcoplasmic reticulum in fast and slow skeletal muscle. FEBS Lett. 274, 73–6.

    Google Scholar 

  • smith, r. m., martell, a. e. (1976) Critical Stability Constants, Vol 4: Inorganic Complexes, pp. 57–8. New York: Plenum Press.

    Google Scholar 

  • stahl, W. l. & baskin, d. g. (1990) Histochemistry of ATPases. J. Histochem. Cytochem. 38, 1099–122.

    Google Scholar 

  • tice, l. w. (1969) Lead-adenosine triphosphate complexes in adenosine triphosphate histochemistry. J. Histochem. Cytochem. 17, 85–94.

    Google Scholar 

  • van Derlaarse, W. j., diegenbach, p. c. & maslam, s. (1984) Quantitative histochemistry of three mouse hind-limb muscles: the relationship between calcium-stimulated myofibrillar ATPase and succinate dehydrogenase activities. Histochem. J. 16, 529–41.

    Google Scholar 

  • van Derlaarse, W. j., diegenbach, p. c. & hemminga, m. a. (1986) Calcium-stimulated myofibrillar ATPase activity correlates with shortening velocity of muscle fibres in Xenopus laevis. Histochem. J. 18, 487–96.

    Google Scholar 

  • van Derlaarse, W. j., lÄnnergren, j. & diegen-Bach, p. c. (1991) Resistance to fatigue of single muscle fibres from Xenopus related to succinate dehydrogenase and myofibrillar ATPase activities. Exp. Physiol. 76, 589–96.

    Google Scholar 

  • van Derlaarse, W. j., lee-Degroot, m. b. e. & diegenbach, p. c. (1994) The maximum sustainable duty cycle of single Xenopus muscle fibres related to succinate dehydrogenase and myofibrillar ATPase activities. J. Musc. Res. Cell Motil. 15, 180.

    Google Scholar 

  • vanduijn, p. (1991) Model systems. Principles and practice of the use of matrix-immobilized enzymes for the study of the fundamental aspects of cytochemical enzyme methods. In Histochemistry, Theoretical and Applied III (edited by stoward, p. j. & pearse, a. g. e.), pp. 433–72. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • vannoorden, c. j. f. & butcher, r. g. (1991) Quantitative enzyme histochemistry. In Histochemistry, Theoretical and Applied III (edited by stoward, p. j. & pearse, a. g. e.), pp. 355–432. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • yoshizaki, k., Watari, h. & radda, g. k. (1990) Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR. Biochem. Biophys. Acta 1051, 144–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Der Laarse, W.J., Van Noort, P., Simonides, W.S. et al. Histochemistry of sarcoplasmic reticulum Ca-ATPase using dysprosium as capturing reagent. Histochem J 27, 702–714 (1995). https://doi.org/10.1007/BF00216684

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00216684

Keywords

Navigation