Skip to main content
Log in

Enkephalin-like immunoreactivity in the pedal ganglion of Mytilus edulis (Bivalvia) and its proximity to dopamine-containing structures

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The presence of enkephalin-like immunoreactivity in the pedal ganglion of the bivalve mollusc Mytilus edulis has been demonstrated. Enkephalin-like immunoreactivity is highly localized in those intraganglionic regions rich in dopamine-containing structures. In addition, FMRF-NH2-like (Phe-Met-Arg-Phe-NH2) immunoreactivity was found to occur in intraganglionic regions that are devoid of enkephalin-like immunoreactivity. The differential topographic distribution of these peptidergic immunoreactivities suggests involvement in separate functions. By contrast, the closeness of enkephalin-like immunoreactivity to dopamine histofluorescence supports previous data demonstrating biochemical and physiological links between these two systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alumets J, Håkanson R, Sundler F, Thorell J (1979) Neuronal localization of immunoreactive enkephalin and β-endorphin in the earthworm. Nature 279:805–806

    Google Scholar 

  • Bloom F, Fattenberg E, Rossier J, Ling N, Guillemin R (1978) Neurons containing β-endorphin in rat brain exist separately from those containing enkephalin: immunocytochemical studies. Proc Natl Acad Sci (Wash) 75:1591–1595

    Google Scholar 

  • Dockray GJ, Vaillant C, Williams RG (1981) New vertebrate brain-gut peptide related to a molluscan neuropeptide and an opioid peptide. Nature 293:656–657

    Google Scholar 

  • Hökfelt T, Ljungdahl A, Terenius L, Elde R, Wilson G (1977) Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: enkephalin and substanceP. Proc Natl Acad Sci (Wash) 74:3081–3085

    Google Scholar 

  • Hong JS, Jang HY, Eratta W, Costa E (1977) Determination of met enkephalin in discrete regions of rat brain. Brain Res 134:383–386

    Google Scholar 

  • Kobayashi R, Palkovits M, Miller RJ, Chang KJ, Cuatrecasas P (1978) Hypophysectomy does not alter rat brain enkephalin distribution. Life Sci 22:379–389

    Google Scholar 

  • Kream RM, Zukin RS, Stefano GB (1980) Demonstration of two classes of opiate binding sites in the nervous tissue of the marine mollusc Mytilus edulis: Positive homotropic cooperativity of lower affinity binding sites. J Biol Chem 225(19):9218–9224

    Google Scholar 

  • Martin R, Frosch D, Kiehling C, Voigt KH (1981) Molluscan neuropeptide-like and enkephalin-like material coexists in octopus nerves. Neuropeptides 2:141–150

    Google Scholar 

  • Martin R, Frosch D, Weber E, Voigt KH (1979) Met-enkephalin-like immunoreactivity in a cephalopod neurohemal organ. Neurosci Lett 15:253–257

    Google Scholar 

  • Martin R, Geis R, Holl R, Schafer M, Voigt KH Co-existence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophyses: immunoreactive methionine leucine5enkephalin and cholecystokinin-like substances. Neurosciences, (in press)

  • Miller RJ, Pickel VM (1980) Immunohistochemical distribution of enkephalins: Interactions with catecholamine containing systems. In: Eränkö O (ed) Histochemistry of cell biology of autonomic neurons, SIF cells and paraneurons. Raven Press, New York 349–359, 1980

    Google Scholar 

  • Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of dopamine systems. Ann Rev Neurosci 1:129–169

    Google Scholar 

  • Osborne NN, Neuhoff V (1979) Are there opiate receptors in the invertebrates? J Pharm Pharmacol 31:481

    Google Scholar 

  • Rémy Ch, Dubois MP (1979) Localization par immunofluorescence de peptides analogues à α-endorphine dans les ganglions infraoesophagiens du lombricide Dendrobaena subrubicunda Eisen. Experientia 35:137–138

    Google Scholar 

  • Rémy CH, Dubois MP (1981) Immunohistological evidence of methionine enkephalin-like material in the brain of the migratory locust. Cell Tissue Res 218:271–278

    Google Scholar 

  • Rémy Ch, Girardie J, Dubois MP (1978) Présence dans le ganglion sous-oesophagien de la Chenille processionnaire du Pin (Thaumetopoea pityocampa Schiff) de cellules revelées en immunofluorescence par un anticorps anti-α-endorphine. CR Acad Sci Paris Ser D 286:651–653

    Google Scholar 

  • Rémy Ch, Girardie J, Dubois MP (1979) Vertebrate neuropeptide-like substances in the suboesophageal ganglion of two insects: Locusta migratoria R. and F. (Orthoptera) and Bombyx mori L. (Lepidoptera). Immunocytological investigation. Gen Comp Endocrinol 37:93–100

    Google Scholar 

  • Sar N, Stumpf WERJ, Chang KJ, Cuatrecasas P (1978) Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol 182:17–38

    Google Scholar 

  • Scharrer B (1978) Peptidergic neurons: facts and trends. Gen Comp Endocrinol 34:50–62

    Google Scholar 

  • Simantov R, Kuhar MJ, Uhl GR, Snyder SH (1977) Opioid peptide enkephalin: immunohistochemical mapping in rat central nervous system. Proc Natl Acad Sci (Wash) 74:2167–2171

    Google Scholar 

  • Stefano GB (1982) Comparative aspects of opioid-dopamine interaction. Cell Mol Neurobiol 2:167–178

    Google Scholar 

  • Stefano GB, Aiello E (1975) Histofluorescent localization of serotonin and dopamine in the nervous system and gill of Mytilus edulis (Bivalvia). Biol Bull 148:141–156

    Google Scholar 

  • Stefano GB, Catapane EJ (1978) Methionine enkephalin increases dopamine levels. Soc Neurosci Abstr 4:283

    Google Scholar 

  • Stefano GB, Catapane EJ (1979) Enkephalins increase dopamine levels in the CNS of a marine mollusc. Life Sci 24:1617–1622

    Google Scholar 

  • Stefano GB, Catapane EJ, Aiello E (1976) Dopaminergic agents: Influence in molluscan nervous system, Science, 194:539–541

    Google Scholar 

  • Stefano GB, Kream RM, Zukin RS (1980) Demonstration of stereospecific opiate binding in the nervous tissue of the marine mollusc Mytilus edulis. Brain Res 181:445–450

    Google Scholar 

  • Stefano GB, Kream RM, Zukin RS, Catapane EJ (1982) Seasonal variation of stereospecific enkephalin binding and dopamine responsiveness in Mytilus edulis pedal ganglia. In: Rozsa KS (ed) Neurotransmitters in Invertebrates Adv Physiol Sciences, Pergamon Press, London 22: 453–459

    Google Scholar 

  • Stefano GB, Catapane EJ, Kream RM (1981a) Characterization of the dopamine stimulated adenylate cyclase in the pedal ganglia of Mytilus edulis: Interactions with etorphine, β-endorphin DALA and methionine enkephalin. Cell Mol Neurobiol 1:57–68

    Google Scholar 

  • Stefano GB, Hall B, Makman MH, Dvorkin B (1981b). Opioids inhibit potassium-stimulated dopamine release in the marine mussel Mytilus edulis and in the cephalopod Octopus bimaculatus. Science, 213:928–930

    Google Scholar 

  • Sternberger LH, Hardy PH, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. J Histochem Cytochem 18:315–333

    Google Scholar 

  • Venturini G, Carolei A, Palladini G, Margotta V, Cerbo R (1981) Naloxone enhances cAMP levels in Planaria. Comp Biochem Physiol 69c: 105–108

    Google Scholar 

  • Weber E, Evans CJ, Samuelson SJ, Barchas JD (1981) A novel peptide neuronal system in rat brain and pituitary. Science 214:1248–1251

    CAS  PubMed  Google Scholar 

  • Zipser B (1980) Identification of specific leech neurons immunoreactive to enkephalin. Nature 283:857–858

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by NIH-MBRS Grant RR 08180 (GBS) and Deutsche Forschungsgemeinschaft (SFB 87/B2, RM).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefano, G.B., Martin, R. Enkephalin-like immunoreactivity in the pedal ganglion of Mytilus edulis (Bivalvia) and its proximity to dopamine-containing structures. Cell Tissue Res. 230, 147–153 (1983). https://doi.org/10.1007/BF00216035

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00216035

Key words

Navigation