Skip to main content
Log in

Correlation of Néel temperature and vacancy defects in fine-particle goethites

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Positron annihilation lifetime spectroscopy (PALS) has been used to study the vacancy-type defects in fine-particle goethites (α-FeOOH). The PALS spectra reveal three components. The intermediate lifetime component (τ2, I2) is attributed to positrons trapped at vacancy defects. The relative intensity of the intermediate lifetime component, I2, increases significantly with decreasing Néel temperature, and this increase is attributed to increasing concentration of vacancy defects. These results support a model of magnetic ordering of clusters arising from a high concentration of iron vacancies which reduces the Néel temperature in these fine-particle goethites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bocquet S, Kennedy SJ (1992) The Néel temperature of fine particle goethite. J Magn Magn Mat 109:260–264

    Google Scholar 

  • Bocquet S, Pollard RJ, Cashion JD (1992) Dynamic magnetic phenomena in fine-particle goethite. Phys Rev B 46:11657–11664

    Google Scholar 

  • Brandt W (1967) Positron annihilation in molecular substances and ionic crystals. In: Stewart AT, Roellig LO (eds) Positron Annihilation, Academic, New York, pp 155–182

    Google Scholar 

  • Brož D, Straková J, Šubrt J, Vinš J, Sedlák B, Reiman SI (1990) Mössbauer spectroscopy of goethite of small particle size. Hyperfine Interact 54:479–482

    Google Scholar 

  • Chambaere D, De Grave E (1984) On the Néel temperature of β-FeOOH structural dependence and its implications. J Magn Magn Mater 42:263–268

    Google Scholar 

  • Coey JMD, Barry A, Brotto J-M, Rakoto H, Brennan S, Mussel WN, Collomb A, Fruchart D (1995) Spin flop in goethite. J Phys Condens Matter 7:759–768

    Google Scholar 

  • De Grave E, Persoons RM, Chambaere DG, Vandenberghe RE, Bowen LH (1986) An 57Fe Mössbauer effect study of poorly crystalline γ-FeOOH. Phys Chem Minerals 13:61–67

    Google Scholar 

  • Forsyth JB, Hedley IG, Johnson CE (1968) The magnetic structure and hyperfine field of goethite (α-FeOOH). J Phys C 1:179–188

    Google Scholar 

  • Gidley DW, Marko KA, Rich A (1976) Precision measurement of the decay rate of orthopositronium in SiO2 powders. Phys Rev Lett 36:395–398

    Google Scholar 

  • Hall TM, Goland AN, Snead CL (1974) Applications of positron-lifetime measurements to the study of defects in metals. Phys Rev B 10:3062–3074

    Google Scholar 

  • Harris AB, Kirkpatrick S (1977) Low-frequency response functions of random magnetic systems. Phys Rev B 16:542–576

    Google Scholar 

  • Hautöjarvi P (ed) (1979) Positrons in solids, Springer, Heidelberg

    Google Scholar 

  • Hill AJ, Katz IM, Jones PL, Pagano RP (1991) The study of the high temperature superconductor Y-Ba-Cu-O by positron annihilation lifetime spectroscopy. Physica C 176:64–74

    Google Scholar 

  • MacKenzie IK, Khoo TL, McDonald AB, McKee BTA (1967) Temperature dependence of positron mean lives in metals. Phys Rev Lett 19:946–948

    Google Scholar 

  • Mascher P, Dannefaer S, Kerr D (1989) Positron trapping rates and their temperature dependencies in electron-irradiated silicon. Phys Rev B 40:11764–11771

    Google Scholar 

  • Mørup S, Madsen MB, Franck J, Villadsen J, Koch CJW (1983) A new interpretation of Mössbauer spectra of micro-crystalline goethite: “superferromagnetism” or “super-spin-glass” behaviour? J Magn Magn Mater 40:163–174

    Google Scholar 

  • Murad E, Johnston JH (1987) Iron oxides and oxyhydroxides. In: Long GJ (ed) Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, Plenum, New York, pp 507–582

    Google Scholar 

  • Pollard RJ, Pankhurst QA, Zientek P (1991) Magnetism in aluminous goethite. Phys Chem Minerals 18:259–264

    Google Scholar 

  • Puff W (1983) PFPOSFIT: A new version of a program for analyzing positron lifetime spectra with non-gaussian prompt curve. Comput Phys Commun 30:359–368

    Google Scholar 

  • Puska MJ, Nieminen RM (1994) Theory of positrons in solids and on solid surfaces. Rev Mod Phys 66:841–897

    Google Scholar 

  • Rochette P, Fillion G (1989) Field and temperature behaviour of remanence in synthetic goethites: paleomagnetic implications. Geophys Res Lett 16:851–854

    Google Scholar 

  • St. Pierre TG, Sipos P, Chan P, Chua-Anusorn A, Bauchspiess KR, Webb J (1993) Synthesis of nanoscale iron oxide structures using protein cages and polysaccharide networks. In: Hadjipanayis GC, Siegel RW (eds) Nanophase Materials: Synthesis — Properties — Applications (NATO ASI series), Kluwer Academic Publishers, Dordrecht, pp 49–56

    Google Scholar 

  • Schwertmann U, Cambier P, Murad E (1985) Properties of goethites of varying crystallinity. Clays Clay Min 33:369–378

    Google Scholar 

  • Schwertmann U, Taylor RM (1977) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in Soil Environments, Soil Sci Soc America, Madison, p 159

    Google Scholar 

  • Sedov VE (1990) Diffusion Model of Superparamagnetic Relaxation. Hyperfine Interact 56:1491–1494

    Google Scholar 

  • Seeger A (1973) Investigation of point defects in equilibrium concentrations with particular reference to positron annihilation techniques. J Phys F: Metal Phys. 3:248–294

    Google Scholar 

  • Seeger A, Banhart E (1987) On the systematics of positron lifetimes in metals. Phys Stat Sol (a) 102:171–179

    Google Scholar 

  • Shinjo T (1966) Mössbauer Effect in Antiferromagnetic Fine Particles. J Phys Soc Jpn 21:917–922

    Google Scholar 

  • Siegel RW (1980) Positron annihilation spectroscopy. Ann Rev Mater Sci 10:393–425

    Google Scholar 

  • Taylor RM (1987) Non-silicate oxides and hydroxides. In: Newman ACD (ed) Chemistry of Clays and Clay Minerals, Longman/Mineralogical Society, London, pp 134–140

    Google Scholar 

  • van der Kraan AM (1972) Mössbauer effect studies of superparamagnetic α-FeOOH and α-Fe2O3. PhD Thesis, Technische Hogeschoo Delft, Netherlands

    Google Scholar 

  • van der Woude F, Dekker AJ (1966) Mössbauer effect in α-FeOOH. Phys Stat Sol 13:181–193

    Google Scholar 

  • van Oosterhout GW (1965) The structure of goethite. Proc Intl Conf on Magnetism, Nottingham 1964, Institute of Physics and Physical Society, London pp 529–532

    Google Scholar 

  • Yamamoto N (1968) The particle size dependence of the Néel temperature of α-FeOOH fine particles. Bull Inst Chem Res Kyoto Univ 46:283–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocquet, S., Hill, A.J. Correlation of Néel temperature and vacancy defects in fine-particle goethites. Phys Chem Minerals 22, 524–528 (1995). https://doi.org/10.1007/BF00209379

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00209379

Keywords

Navigation