Skip to main content
Log in

Probing the influence of temperature on defects in oxy-hydroxide ceramics by positron annihilation lifetime and coincidence Doppler broadening spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, aluminum oxy-hydroxide (boehmite) was synthesized using the co-precipitation method and two phases gamma and alpha alumina were prepared from boehmite by increasing temperature. Subsequently, three phases were tested by different characterizing methods such as XRD, BET, and positron-based spectroscopies. Using XRD and BET, changes in crystalline structure and pore structures (pore size, morphology, and pore size distribution) versus temperature were investigated. The positron annihilation lifespan spectrometer (PALS) and the coincidence Doppler expansion spectrometer (CDBS) were used to study defects in the crystal structure due to temperature rise. The results show that with increase in temperature the type and amount of structural defects change. Also, the ratio of increasing the lifetime of positron annihilation to the phase change of the crystal lattice from the boehmite to the alpha is significant. In other words, in the boehmite, the first-lifetime component (τ1) due to the increase in temperature from 150 °C to 250 °C increases by about 105% and then in the initial phase starting of the γ-alumina phase (550 °C) decreases by about 111% and this value for the alpha phase (1150 °C) reaches 348%. Using the Tao–Eldrup mathematical model, the lifetime of the positron and how it is trapped in the defects of lattice structures in all three main phases were explored. The CDB ratio curves, especially in the momentum area of 2p oxygen electrons, indicate that the crystal lattice structure changes from cubic to hexagonal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Sellaiyan, A. Uedono, K. Sivaji, S.J. Priscilla, J. Sivasankari, T. Selvalakshmi, Appl. Phys. A 122, 1–9 (2016)

    Article  Google Scholar 

  2. S. Sellaiyan, A. Uedono, L.V. Devi, K. Sivaji, Appl. Phys. A 125, 1–10 (2019)

    Article  Google Scholar 

  3. F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013)

    Article  ADS  Google Scholar 

  4. X. Cao, T. Zhu, S. Jin, P. Kuang, P. Zhang, E. Lu, Y. Gong, L. Guo, B. Wang, Appl. Phys. A 123, 177 (2017)

    Article  ADS  Google Scholar 

  5. F. Moura, Am. J. Phys. 87, 638–642 (2019)

    Article  ADS  Google Scholar 

  6. M. Ghasemifard, M. Ghamari, S. Samarin, J.F. Williams, Appl. Phys. A 126, 1–11 (2020)

    Article  Google Scholar 

  7. A. V Maletsky, D.R. Belichko, T.E. Konstantinova, G.K. Volkova, A.S. Doroshkevich, A.I. Lyubchyk, V. V Burkhovetskiy, V.A. Aleksandrov, D. Mardare, C. Mita, Ceram. Int. (2021)

  8. E.E. Abdel-Hady, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 221 (2004) 225–229

  9. J. Cyriac, S. Augustine, N. Kalarikkal, S. Mukherjee, M. Ahmed, P.M.G. Nambissan, Phys. B Condens. Matter. 599 (2020) 412431

  10. M. Zhao, J. Wang, D. Chen, X. Hao, B. Wang, Phys. B Condens. Matter. 403, 2594–2596 (2008)

    Article  ADS  Google Scholar 

  11. Y.S. Jeong, J. Lee, Y.-B. Chun, Y.R. Uhm, G.-M. Sun, Y.M. Kim, J. Radioanal. Nucl. Chem. (2021) 1–7

  12. F.A. Selim, Mater. Charact. (2021) 110952

  13. M.N. Mirzayev, B.A. Abdurakhimov, E. Demir, A.A. Donkov, E. Popov, M.Y. Tashmetov, I.G. Genov, T.T. Thabethe, K. Siemek, K. Krezhov, Phys. B Condens. Matter. 611 (2021) 412842

  14. F. Castelli, G. Consolati, G. Tanzi Marlotti, Nanomaterials 11 (2021) 2350

  15. B. Xiong, J. Li, C. He, J. Lai, X. Liu, T. Huang, Materials 14, 3371 (2021)

    Article  ADS  Google Scholar 

  16. T. Stassin, R. Verbeke, A.J. Cruz, S. Rodríguez-Hermida, I. Stassen, J. Marreiros, M. Krishtab, M. Dickmann, W. Egger, I.F.J. Vankelecom, Adv. Mater. 33, 2006993 (2021)

    Article  Google Scholar 

  17. E. Hirschmann, M. Butterling, U.H. Acosta, M.O. Liedke, A.G. Attallah, P. Petring, M. Görler, R. Krause-Rehberg, A. Wagner, J. Instrum. https://doi.org/10.1088/1748-0221/16/08/P08001

  18. P.M. Shafi, E. Kurian, N. Joseph, S. Sellaiyan, A. Uedono, A.C. Bose, Phys. B Condens. Matter. 615 (2021) 413087

  19. J. Huang, C. Chen, Z. Huang, J. Fu, S. Chen, Y. Jiang, L. Lu, Y. Xia, X. Zhao, Ceram. Int. 47, 16943–16949 (2021)

    Article  Google Scholar 

  20. S. Lamouri, M. Hamidouche, N. Bouaouadja, H. Belhouchet, V. Garnier, G. Fantozzi, J.F. Trelkat, Boletín La Soc. Española Cerámica Y Vidr. 56, 47–54 (2017)

    Article  Google Scholar 

  21. M.I.F. Macêdo, C.A. Bertran, C.C. Osawa, J. Mater. Sci. 42, 2830–2836 (2007)

    Article  ADS  Google Scholar 

  22. N. Shaheen, M.A. Yousuf, I. Shakir, S. Zulfiqar, P.O. Agboola, M.F. Warsi, Phys. B Condens. Matter. 580 (2020) 411820

  23. Z. Shi, W. Jiao, L. Chen, P. Wu, Y. Wang, M. He, Micropor. Mesopor. Mater. 224, 253–261 (2016)

    Article  Google Scholar 

  24. D. Biswas, A. Dey, A.S. Das, D. Roy, L.S. Singh, P.M.G. Nambissan, Materialia. 15 (2021) 100969

  25. U.T.T. Doan, A.T.T. Pham, T.B. Phan, S. Park, A.T. Luu, Q.H. Nguyen, T.S. Lo, T.D. Tap, M. Ohtani, N.K. Pham, J. Alloys Compd. 857 (2021) 157602

  26. N. Djourelov, Y. Aman, K. Berovski, P. Nedelec, N. Charvin, V. Garnier, E. Djurado, Phys. Status Solidi 208, 795–802 (2011)

    Article  ADS  Google Scholar 

  27. Y. Liu, Y. Song, P. Zhang, S. Wang, T. Zhu, S. Jin, E. Lu, X. Cao, B. Wang, J. Nucl. Mater. 553 (2021) 153045

  28. J. Li, Y. Du, Y. Ding, Z. Peng, J. Quant. Spectrosc. Radiat. Transf. 254 (2020) 107216

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misagh Ghamari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Symbol

Expression

λ

Decay constant

σ

Statistical weight

E 1,2

Photon energy

E p

Positron energy

x nl

n-node of Bessel function j

y nm

n-node of Bessel function Jm

ε

Empirical parameter

P

Instrumental resolution function

I

Relative intensity of spectrum

τ

Lifetime

D

Pore radii

m 0

Rest mass of electron

c

Velocity of light

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemifard, M., Ghamari, M. Probing the influence of temperature on defects in oxy-hydroxide ceramics by positron annihilation lifetime and coincidence Doppler broadening spectroscopy. Appl. Phys. A 128, 180 (2022). https://doi.org/10.1007/s00339-022-05323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05323-4

Keywords

Navigation