Skip to main content
Log in

Light-induced extracellular calcium and sodium concentration changes in the retina of Calliphora: involvement in the mechanism of light adaptation

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Ion-selective microelectrodes inserted into the compound eyes of Calliphora were used to monitor the changes in extracellular concentration of Ca2+ and Na+ (Cao, Nao) brought about by a 1-min exposure to white light (maximal luminous intensity ≈0.1 cd/cm2).

Using Ringer solution as the reference (Ca2+ = 1 mM), the dark concentration of the calcium in the retina was found to be (1.4 ± 0.4) mM (n=12). Stimulation with light reduces Cao. At intensities near maximal the Cao signal is phasic, reaching a transient minimum about 6 s after light onset \((\Delta {\text{Ca}}_{\text{o}} {\text{ = }} - 6.28\% \pm 1.6\% ,{\text{ }}n = 20)\) and then rising to a nearly stable plateau below the dark level (-3.3% ± 2.6%). Cao signals measured in the white-eyed mutant (chalky), which lacks pigment granules, are comparable to those in the wild type.

Conclusions: (a) There are no extracellular Ca2+ binding sites that regulate light adaptation, such as were postulated by Hochstrate and Hamdorf (1985). (b) Ca2+ influx into the photoreceptors seems to be necessary for light adaptation, (c) The pigment granules have no major function in intracellular calcium regulation.

The time course of the Nao signals resembles that of the Cao signals. Because the percentage concentration change is small, light-induced extracellular Na+-depletion cannot contribute to a reduced response amplitude at light adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ca i :

intracellular Ca2+ concentration

Ca o :

extracellular Ca2+ concentration

Kino :

extracellular K+ concentration

Na o :

extracellular Na+ concentration

References

  • Ammann D (1986) Ion-selective microelectrodes: principles, design and application. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ammann D, Chao P, Simon W (1987) Valinomycin-based K+ selective microelectrodes with low electrical membrane resistance. Neurosci Lett 74:221–226

    Google Scholar 

  • Anton-Erxleben F (1989) X-ray microanalysis of screening pigment granula in the ommatidia of Drosophila melanogaster. Verh Dtsch Zool Ges 82:270

    Google Scholar 

  • Baumann F (1968) Slow and spike potentials recorded from retinula cells of the honeybee drone in response to light. J Gen Physiol 52:855–875

    Google Scholar 

  • Baumann O, Walz B (1989a) Topography of Ca2+-sequestering endoplasmic reticulum in photoreceptors and pigmented glial cells in the compound eye of the honeybee drone. Cell Tissue Res 255:511–522

    Google Scholar 

  • Baumann O, Walz B (1989b) Calcium- and inositol polyphosphate-sensitivity of the calcium-sequestering endoplasmic reticulum in the photoreceptor cells of the honeybee drone. J Comp Physiol A 165:627–636

    Google Scholar 

  • Baumann O, Walz B, Somlyo AV, Somlyo AP (1991) Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors. Proc Natl Acad Sci USA 88:741–744

    Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205

    Google Scholar 

  • Blaustein MP (1988) Calcium transport and buffering in neurons. Trends Neurosci 11:438–443

    Google Scholar 

  • Bolsover SR, Brown JE (1985) Calcium ion, an intracellular messenger of light adaptation, also participates in excitation of Limulus ventral photoreceptor cells. J Physiol (Lond) 364:389–393

    Google Scholar 

  • Brown HM, Rydquist B, Moser H (1988) Intracellular calcium changes in Balanus photoreceptor. A study with calcium ionselective electrodes and arsenazo III. Cell Calcium 9:105–119

    Google Scholar 

  • Brown JE (1986) Calcium and light adaptation in invertebrate photoreceptors. In: Stieve H (ed) The molecular mechanism of photoreception. Dahlem Konferenzen. Springer, Berlin Heidelberg New York, pp 231–240

    Google Scholar 

  • Brown JE, Blinks JR (1974) Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors. Detection with aequorin. J Gen Physiol 64:643–665

    Google Scholar 

  • Brown JE, Mote MI (1974) Ionic dependence of reversal voltage of the light response in Limulus ventral photoreceptors. J Gen Physiol 63:337–350

    Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Ann Rev Biochem 56:395–433

    Google Scholar 

  • Case R (1957) Differentiation of the effects of pH and CO2 on the spiracular function of insects. J Cell Comp Physiol 49:103–113

    Google Scholar 

  • Chi C, Carlson SD (1981) Lanthanum and freeze fracture studies on the retinula cell junction in the compound eye of the housefly. Cell Tissue Res 214:541–552

    Google Scholar 

  • Coles JA (1986) Homeostasis of extracellular fluid in retinas of invertebrates and vertebrates. Progress in Sensory Physiology 6. Springer, Berlin Heidelberg New York, pp 105–138

    Google Scholar 

  • Coles JA, Orkand RK (1985) Changes in sodium activity during light stimulation in photoreceptors, glia and extracellular space in drone retina. J Physiol (Lond) 362:415–435

    Google Scholar 

  • Coles JA, Schneider-Picard G (1989) Amplification of small signals by voltage-gated sodium channels in drone photoreceptors. J Comp Physiol A 165:109–118

    Google Scholar 

  • Devary O, Heichal O, Blumenfeld A, Cassel D, Suss E, Barash S, Rubinstein CT, Minke B, Selinger Z (1987) Coupling of photoexcited rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc Natl Acad Sci USA 84:6939–6943

    Google Scholar 

  • Dörrscheidt-Käfer M (1972) Die Empfindlichkeit einzelner Photorezeptoren im Komplexauge von Calliphora erythrocephala. J Comp Physiol 81:309–340

    Google Scholar 

  • Fein A, Tsacopoulos M (1988) Activation of mitochondrial oxidative metabolism by calcium ions in Limulus ventral photoreceptor. Nature 331:437–440

    Google Scholar 

  • Franceschini N, Kirschfeld K (1976) Le controle automatique du flux lumineux dans l'oeil composé des diptères. Propriétés spectrales, statiques et dynamiques du mécanisme. Biol Cybern 21:181–203

    Google Scholar 

  • Gorman ALF, Levy S, Nasi E, Tillotson D (1984) Intracellular calcium measured with calcium-sensitive micro-electrodes and arsenazo III in voltage-clamped Aplysia neurones. J Physiol (Lond) 353:127–142

    Google Scholar 

  • Hamdorf K, Schwemer J (1975) Photoregeneration and the adaptation process in insect photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelerg New York, pp 363–389

    Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–148

    Google Scholar 

  • Harary HH, Brown JE (1984) Spatially nonuniform changes in intracellular calcium ion concentrations. Science 224:292–294

    Google Scholar 

  • Hardie RC (1985) Functional organization of the fly retina. Progress in Sensory Physiology 5. Springer, Berlin Heidelberg New York, pp 1–79

    Google Scholar 

  • Hausen K (1976) Struktur, Funktion und Konnektivität bewegungs-empfindlicher Interneuronen im dritten optischen Neuropil der Schmeißfliege Calliphora erythrocephala. Dissertation, Universität Tübingen

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly I. The horizontal cells: structure and signals. Biol Cybern 45:143–156

    Google Scholar 

  • Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in cerebral cortex of the cat. Exp Brain Res 27:237–243

    Google Scholar 

  • Hochstrate P (1989) Photoresponses from cells in the fly's eye which are not visual cells. Z Naturforsch 44c:867–875

    Google Scholar 

  • Hochstrate P, Hamdorf K (1985) The influence of extracellular calcium on the response of fly photoreceptors. J Comp Physiol A 156:53–64

    Google Scholar 

  • Hodgkin AL, McNaughton PA, Nunn BJ (1985) The ionic selectivity and calcium dependence of the light-sensitive pathway in toad rods. J Physiol (Lond) 358:447–468

    Google Scholar 

  • Hofmeier G, Lux HD (1981) The time course of intracellular free calcium and related electrical effects after injection of CaCl2 into neurons of the snail, Helix pomatia. Pflügers Arch 391:242–251

    Google Scholar 

  • Howard J (1984) Calcium enables photoreceptor pigment migration in a mutant fly. J Exp Biol 113:471–475

    Google Scholar 

  • IUPAC Commission on Analytical Nomenclature, prepared for publication by Guilbault GG (1979) Recommendations for publishing manuscripts on ion-selective electrodes. Ion-Selective Electrode Rev 1:139–143

    Google Scholar 

  • Ivens I, Stieve H (1984) Influence of the membrane potential on the intracellular light induced Ca2+-concentration change of the Limulus ventral photoreceptor monitored by arsenazo III under voltage clamp conditions. Z Naturforsch 39c:986–992

    Google Scholar 

  • Jansonius NM (1990) Properties of the sodium pump in the blowfly photoreceptor cell. J Comp Physiol A 167:461–467

    Google Scholar 

  • Kirschfeld K, Vogt R (1980) Calcium ions and pigment migration in fly photoreceptors. Naturwissenschaften 67:516–517

    Google Scholar 

  • Langer H (1962) A new eye colour mutation in Calliphora erythrocephala Meig. Nature 194:111–112

    Google Scholar 

  • Lanter F, Steiner RA, Ammann D, Simon W (1982) Critical evaluation of the applicability of neutral carrier-based calcium selective microelectrodes. Anal Chim Acta 135:51–59

    Google Scholar 

  • Laughlin SB, Hardie RC (1978) Common strategies for light adaptation in the peripheral visual systems of the fly and dragonfly. J Comp Physiol 128:319–340

    Google Scholar 

  • Levy S, Fein A (1985) Relationship between light sensitivity and intracellular free Ca concentration in Limulus ventral photoreceptors. A quantitative study using Ca-selective microelectrodes. J Gen Physiol 85:805–841

    Google Scholar 

  • Lux HD, Neher E (1973) The equilibration time course of [K o+ ] in cat cortex. Exp Brain Res 17:190–205

    Google Scholar 

  • Maaz G, Stieve H (1980) The correlation of the receptor potential with the light induced transient increase in intracellular calciumconcentration measured by absorption change of arsenazo III injected into Limulus ventral nerve photoreceptor cell. Biophys Struct Mech 6:191–208

    Google Scholar 

  • Martin RL, Hafner GS (1986) Factors influencing the degradation of photoreceptor membrane in the crayfish, Procambarus clarkii. Cell Tissue Res 243:205–212

    Google Scholar 

  • Matic T, Laughlin SB (1981) Changes in the intensity-response function of an insect's photoreceptor due to light adaptation. J Comp Physiol 145:169–177

    Google Scholar 

  • Meier PC (1982) Two-parameter Debye-Hückel approximation for the evaluation of mean activity coefficients of 109 electrolytes. Anal Chim Acta 136:363–368

    Google Scholar 

  • Minke B, Armon E (1984) Activation of electrogenic Na-Ca exchange by light in fly photoreceptors. Vision Res 24:109–115

    Google Scholar 

  • Minke B, Tsacopoulos M (1986) Light induced sodium dependent accumulation of calcium and potassium in the extracellular space of bee retina. Vision Res 26:679–690

    Google Scholar 

  • Muijser H (1979) The receptor potential of retinular cells of the blowfly Calliphora: the role of sodium, potassium and calcium ions. J Comp Physiol 132:87–95

    Google Scholar 

  • O'Day PM, Lisman JE, Goldring M (1982) Functional significance of voltage-dependent conductances in Limulus ventral photoreceptors. J Gen Physiol 79:211–232

    Google Scholar 

  • Oehme M, Simon W (1976) Microelectrode for potassium ions based on a neutral carrier and comparison of its characteristics with a cation exchanger sensor. Anal Chem 86:21–225

    Google Scholar 

  • Oehme M, Kessler M, Simon W (1976) Neutral carrier Ca2+-microelectrode. Chimia 3:204–206

    Google Scholar 

  • Orkand RK, Dietzel I, Coles JA (1984) Light-induced changes in extracellular volume in the retina of the drone, Apis mellifera. Neurosci Lett 45:273–278

    Google Scholar 

  • Payne R (1986) Phototransduction by microvillar photoreceptors of invertebrates: mediation of a visual cascade by inositol trisphosphate. Photobiochem Photobiophys 86:373–397

    Google Scholar 

  • Payne R, Walz B, Levy S, Fein A (1988) The localization of calcium release by inositol trisphosphate in Limulus photoreceptors and its control by negative feedback. Phil Trans R Soc Lond B 320:359–379

    Google Scholar 

  • Pugh EN, Brown JE, Hamdorf K, Hillman P, Hochstrate P, Keiper WJM, Kirschfeld K, Lamb TD, Minke B, Pepperberg DR, Schwemer J, Shapley R (1986) Adaptation. Group Report. In: Stieve H (ed) The molecular mechanism of photoreception. Dahlem Konferenzen. Springer, Berlin Heidelberg New York, pp 467–488

    Google Scholar 

  • Roebroek JGH, Stavenga DG (1990) Insect pupil mechanisms. IV. Spectral characteristics and light intensity dependence in the blowfly, Calliphora erythrocephala. J Comp Physiol A 166:537–543

    Google Scholar 

  • Sandler C (1990a) Homeostasis of extracellular fluid in retinas of drones and flies. In: Elsner N, Roth G (eds) Brain — perception — cognition. Proceedings of the 18th Göttingen neurobiology conference. Thieme, Stuttgart New York, p 212

    Google Scholar 

  • Sandler C (1990b) Ionenhomöostase in der Insektenretina — Calcium, Lichtadaptation und Neuron-Glia-Interaktion. Dissertation, Eberhard-Karls-Universität, Tübingen

    Google Scholar 

  • Sandler C, Kirschfeld K (1988) Light intensity controls extracellular Ca2+ concentration in the blowfly retina. Naturwissenschaften 75:256–258

    Google Scholar 

  • Sandler C, Kirschfeld K (1989) Photostimulation decreases the extracellular Ca2+ concentration in the blowfly retina and lamina. In: Elsner N, Singer W (eds) Dynamics and plasticity in neuronal systems. Proceedings of the 17th Göttingen neurobiolgy conference. Thieme, Stuttgart New York, p 90

    Google Scholar 

  • Schröder W, Frings D, Stieve H (1980) Measuring calcium uptake and release by invertebrate photoreceptor cells by laser microprobe mass spectroscopy. Scanning Electron Microsc 11:647–656

    Google Scholar 

  • Shaw SR (1978) The extracellular space and blood-eye barrier in an insect retina: an ultrastructural study. Cell Tissue Res 188:35–61

    Google Scholar 

  • Tinbergen J, Stavenga DG (1987) Spectral sensitivity of light induced respiratory activity of photoreceptor mitochondria in the intact fly. J Comp Physiol A 160:195–203

    Google Scholar 

  • Tsien RY, Rink TJ (1980) Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim Biophys Acta 599:623–638

    Google Scholar 

  • Tsuda M (1987) Photoreception and phototransduction in invertebrate photoreceptors. Photochem Photobiol 45:915–931

    Google Scholar 

  • Walz B (1982) Calcium-sequestering smooth endoplasmic reticulum in retinula cells of the blowfly. J Ultrastruct Res 81:240–248

    Google Scholar 

  • Weingart R, Hess P (1984) Free calcium in sheep cardiac tissue and frog skeletal muscle measured with Ca2+-selective microelectrodes. Pflügers Arch 402:1–9

    Google Scholar 

  • White RH, Michaud NA (1980) Calcium is a component of ommochrome pigment granules in insect eyes. Comp Biochem Physiol 65A:239–242

    Google Scholar 

  • Wuhrmann P, Ineichen H, Riesen-Willi U, Lezzi M (1979) Change in nuclear potassium electrochemical activity and puffing of potassium-sensitive salivary chromosome regions during Chironomus development. Proc Natl Acad Sci USA 76:806–808

    Google Scholar 

  • Yau KW, Nakatani K (1984) Cation selectivity of light-sensitive conductance in retinal rods. Nature 309:352–354

    Google Scholar 

  • Ziegler A, Walz B (1989) Analysis of extracellular calcium and volume changes in the compound eye of the honeybee drone, Apis mellifera. J Comp Physiol A 165:697–709

    Google Scholar 

  • Ziegler A, Walz B (1990) Evidence for light-induced release of Ca2+ from intracellular stores in bee photoreceptors. Neurosci Lett 111:87–91

    Google Scholar 

  • Ziegler I, Harmsen R (1969) The biology of pteridines in insects. Adv Insect Physiol 6:139–203

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandler, C., Kirschfeld, K. Light-induced extracellular calcium and sodium concentration changes in the retina of Calliphora: involvement in the mechanism of light adaptation. J Comp Physiol A 169, 299–311 (1991). https://doi.org/10.1007/BF00206994

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00206994

Key words

Navigation