Skip to main content
Log in

Calcium Component of the Retinal Light Response in the Snail Lymnaea stagnalis: a Pharmacological and Ultrastructural Study

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The study aimed to analyze the role and sources of calcium ions during the retinal light response in the freshwater pond snail Lymnaea stagnalis. We explored the effect of the following pharmacological agents modulating intracellular Ca2+ concentration on the electroretinogram (ERG) of an isolated eye: 2-aminoethyl diphenyl borate, a Ca2+ current modulator; EGTA, a Ca2+ chelator; (+)-cis-dilthiazem and Cd2+, Ca2+ channel blockers. All these agents suppressed the slow ERG wave and associated impulse activity with varying degrees of effectiveness and reversibility. It was concluded that light response of microvillar photoreceptors in L. stagnalis is accompanied by an elevation of the cytoplasmic Ca2+ concentration. Together with ultrastructural features of photoreceptors, our results suggest that during the light response calcium ions are not only released from the apical intracellular Ca2+ stores, but, at least in part, enter from the extracellular medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yau KW, Hardie RC (2009) Phototransduction motifs and variations. Cell 139(2):246–264. https://doi.org/10.1016/j.cell.2009.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Abbas F, Vinberg F (2009) Transduction and adaptation mechanisms in the cilium or microvilli of photoreceptors and olfactory receptors from insects to humans. Front Cell Neurosci 15:662453. https://doi.org/10.3389/fncel.2021.662453

    Article  CAS  Google Scholar 

  3. Katz B, Minke B (2009) Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci 3:2. https://doi.org/10.3389/neuro.03.002.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fu Y, Yau KW (2007) Phototransduction in mouse rods and cones. Pflugers Arch 454(5):805-819. https://doi.org/10.1007/s00424-006-0194-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nasi E, del Pilar Gomez M, Payne R (2000) Phototransduction mechanisms in microvillar and ciliary photoreceptors of invertebrates. In: Stavenga DG, DeGrip WJ, Pugh EN (eds). Handbook of Biological Physics. V.3. Elsevier Science BV, North-Holland. 389–448. https://doi.org/10.1016/S1383-8121(00)80011-1

    Chapter  Google Scholar 

  6. Fain GL, Hardie R, Laughlin SB (2010) Phototransduction and the evolution of photoreceptors. Curr Biol 20(3): R114–R124. https://doi.org/10.1016/j.cub.2009.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871. https://doi.org/10.1126/science.1099955

    Article  CAS  PubMed  Google Scholar 

  8. Gotow T, Nishi T (2009) A new photosensory function for simple photoreceptors, the intrinsically photoresponsive neurons of the sea slug Onchidium. Front Cell Neurosci 3:18. https://doi.org/10.3389/neuro.03.018.2009

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kartelija G, Nedeljkovic M, Radenovic L (2003) Photosensitive neurons in mollusks. Comp Biochem Physiol A 134(3):483–495. https://doi.org/10.1016/s1095-6433(02)00351-3

    Article  Google Scholar 

  10. Katagiri Y, Katagiri Y (2008) A multiple photoreceptive system in a marine gastropod, Onchidium: 1) Morphological characteristics and photoresponse of four kinds of photoreceptor cells. Hikaku seiri seikagaku (Comparative Physiology and Biochemistry) 25(1):4–10. https://doi.org/10.3330/hikakuseiriseika.25.4

  11. Sudoplatov KA, Zhukov VV (1999) Electrical responses of peripheral nerves of the mollusc Lymnaea stagnalis to photostimulation of skin surface. J Evol Biochem Physiol 35(4):360–369. https://www.researchgate.net/publication/289523282

    Google Scholar 

  12. Sakakibara M, Aritaka T, Iizuka A, Suzuki H, Horikoshi T, Lukowiak K (2005) Electrophysiological responses to light of neurons in the eye and statocyst of Lymnaea stagnalis. J Neurophysiol. 93(1):493–507. https://doi.org/10.1152/jn.00692.2004

    Article  PubMed  Google Scholar 

  13. Zhukov VV, Fedorenko AD, Lavrova AI, Postnikov EB (2017) Electrical responses of Lymnaea stagnalis to light stimulation: Effect of divalent cations. J Evol Biochem Physiol 53(5):404–413. https://doi.org/10.1134/S0022093017050064

    Article  CAS  Google Scholar 

  14. Takigami S, Sunada H, Horikoshi T, Sakakibara M (2014) Morphological and physiological characteristics of dermal photoreceptors in Lymnaea stagnalis. Biophysics (Nagoya-shi) 10:77–88. https://doi.org/10.2142/biophysics.10.77

  15. Sunada H, Sakaguchi T, Horikoshi T, Lukowiak K, Sakakibara M (2010) The shadow-induced withdrawal response, dermal photoreceptors, and their input to the higher-order interneuron RPeD11 in the pond snail Lymnaea stagnalis. J Exp Biol 213(20):3409–3415. https://doi.org/10.1242/jeb.043521

    Article  PubMed  Google Scholar 

  16. Pankey S, Sunada H, Horikoshi T, Sakakibara M (2010) Cyclic nucleotide-gated channels are involved in phototransduction of dermal photoreceptors in Lymnaea stagnalis. J Comp Physiol B 180(8):1205–1211. https://doi.org/10.1007/s00360-010-0490-x

    Article  CAS  PubMed  Google Scholar 

  17. Stoll CJ (1973) Observations on the ultrastructure of the eye of the basommatophoran snail Lymnaea stagnalis (L.). Proc Kon Ned Akad Wet 76:414–424. https://eurekamag.com/research/023/225/023225797.php

    Google Scholar 

  18. Bobkova MV, Gál J, Zhukov VV, Shepeleva IP, Meyer-Rochow VB (2004) Variations in the Retinal Designs of Pulmonate Snails (Mollusca, Gastropoda): Squaring Phylogenetic Background and Ecophysiological Needs (I). Invertebrate Biology 123(2):101–115. https://doi.org/10.1111/j.1744-7410.2004.tb00146.x

    Article  Google Scholar 

  19. Zhukov VV, Saphonov MV (2020) Activation of IP3 receptors is a component of phototransduction in gastropods retina. J Evol Biochem Physiol 56(7):811. https://doi.org/10.31857/S0044452920072978

    Article  Google Scholar 

  20. Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem 122(3):498–505. https://doi.org/10.1093/oxfordjournals.jbchem.a021780

    Article  CAS  PubMed  Google Scholar 

  21. Lansman JB, Hess P, Tsien RW (1986) Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J Gen Physiol 88(3):321–347. https://doi.org/10.1085/jgp.88.3.321

    Article  CAS  PubMed  Google Scholar 

  22. Dobrev D, Milde AS, Andreas K, Ravens U (1999) The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum. Br J Pharmacol 127(2):576-582. https://doi.org/10.1038/sj.bjp.0702574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laryushkin DP, Maiorov SA, Zinchenko VP, Gaidin SG, Kosenkov AM (2021) Role of L-Type Voltage-Gated Calcium Channels in Epileptiform Activity of Neurons. Int J Mol Sci 22(19):10342. https://doi.org/10.3390/ijms221910342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leybaert L (2016) IP3, still on the move but now in the slow lane. Sci Signal 9(453):fs17. https://www.science.org/doi/10.1126/scisignal.aal1929

    Article  Google Scholar 

  25. Wang Y, Deshpande M, Payne R (2002) 2-Aminoethoxydiphenyl borate inhibits phototransduction and blocks voltage-gated potassium channels in Limulus ventral photoreceptors. Cell Calcium 32(4):209–216. https://doi.org/10.1016/S0143416002001562

    Article  CAS  PubMed  Google Scholar 

  26. Montell C (2012) Drosophila visual transduction. Trends Neurosci 35(6):356–363. https://doi.org/10.1016/j.tins.2012.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hardie RC (2012) Phototransduction mechanisms in Drosophila microvillar photoreceptors. WIREs Membr Transp Signal 1:162–187. https://doi.org/10.1002/wmts.20

    Article  CAS  Google Scholar 

  28. del Pilar Gomez M, Nasi E (2009) Prolonged calcium influx after termination of light-induced calcium release in invertebrate photoreceptors. J Gen Physiol 134(3):177–189. https://doi.org/10.1085/jgp.200910214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Kerkhove E, Pennemans V, Swennen Q (2010) Cadmium and transport of ions and substances across cell membranes and epithelia. Biometals 23(5):823-855. https://doi.org/10.1007/s10534-010-9357-6

    Article  CAS  PubMed  Google Scholar 

  30. Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM (2002) 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated Ca2+ entry but an inconsistent inhibitor of InsP3-induced Ca2+ release. FASEB J 16(10):1145–1150. https://doi.org/10.1096/fj.02-0037rev

    Article  CAS  PubMed  Google Scholar 

  31. Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca(2+) release-activated Ca(2+) channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol 536 (Pt 1):3–19. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00003.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dickinson GD, Ellefsen KL, Dawson SP, Pearson JE, Parker I (2016) Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action. Sci Signal 9(453):ra108. https://doi.org/10.1126/scisignal.aag1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhukov VV (2007) On the problem of retinal transmitters of the freshwater mollusc Lymnaea stagnalis. J Evol Biochem Phys 43(5):524–532. https://doi.org/10.1134/S0022093007050118

    Article  Google Scholar 

  34. Zylstra U (1972) Distribution and ultrastructure of epidermal sensory cells in the freshwater snail Lymnaea stagnalis and Biomphalaria pheifferi. Neth J Zool 22:283–298. https://doi.org/10.1163/002829672X00103

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors are grateful Prof. D. von Keyserling and Mrs. A. Agbedor (Institute of Anatomy, Medical Faculty, RWTH, Aachen) for the opportunity and assistance in carrying out electron microscopy.

Funding

M.V.S. was supported by the Baltic Federal University grant for graduate students (No. 879, 12-10-2021) and a starting grant for young scientists (program 5-100).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (V.V.Zh.), data collection (V.V.Zh. and M.V.S.), data processing (V.V.Zh. and M.V.S.), writing and editing a manuscript (V.V.Zh. and M.V.S.).

Corresponding author

Correspondence to V. V. Zhukov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest that might be associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 3, pp. 196–208https://doi.org/10.31857/S004445292203007X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.V., Saphonov, M.V. Calcium Component of the Retinal Light Response in the Snail Lymnaea stagnalis: a Pharmacological and Ultrastructural Study. J Evol Biochem Phys 58, 652–665 (2022). https://doi.org/10.1134/S0022093022030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022030036

Keywords:

Navigation