Skip to main content
Log in

Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden VIII. Calcium dependence and β-amylase activity

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Red-light-induced germination (via phytochrome) of turions of Spirodela polyrhiza (L.) Schleiden, strain SJ, showed an absolute requirement for exogenously applied calcium (Appenroth et al. 1990b, Biochem. Physiol. Pflanzen 186, 209–219). With calcium step-up experiments (from 0.9 μM to 1 mM Ca2+) the influence of Ca2+ on the escape from far-red-light reversibility was investigated. Delaying the time of Ca2+ application after the red light pulse resulted in an increased reversibility. This confirmed that the calcium-requiring phase is within the phytochrome-dependent period. Ten days after a red light pulse was applied the activity of β-amylase (EC 3.2.1.2) was increased about tenfold. The starting point was similar in the germination and enzymatic responses, but half-maximal response times according to the Mitscherlich function (2.5 d and 6.9 d, respectively) and times of saturation (about 6 d and 9 d, respectively) were different. Increase of β-amylase activity was completely inhibited by irradiation with far-red light (demonstrating phytochrome as the photoreceptor), as well as by inhibitors of translation (cycloheximide, puromycin) and transcription (cordycepin). Once formed, the active enzyme protein was stable for at least 4 d after cycloheximide application. After application of cordycepin a small amount of translation activity was detected until complete inhibition was reached after 2 d. This phytochrome-modulated, de-novo synthesis of β-amylase was only slightly dependent on exogenous Ca2+. Therefore, it can be concluded that the phytochrome-mediated signal-transduction chain branches either in its reversible part or as a consequence of diversity of the primary phytochrome reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FR:

far-red light

Pfr :

phytochrome, far-red-light-absorbing form

R:

red light

Rev:

reversibility of the red-light response by far-red light

References

  • Appenroth, K.-J., Augsten, H. (1990) Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. V. Demonstration of a calcium-requiring phase during phytochrome-mediated germination. Photochem. Photobiol. 52, 61–65

    Google Scholar 

  • Appenroth, K.-J., Augsten, H., Liebermann, B., Feist, H. (1982) Effects of light quality on amino acid composition of proteins in Wolffia arrhiza (L.) Wimm. using a specially modified Bradford method. Biochem. Physiol. Pfl. 177, 251–258

    Google Scholar 

  • Augsten, H., Kunz, E., Appenroth, K.-J. (1988) Photophysiology of turion germination in Spirodela polyrrhiza (L.) Schleiden. I. Phytochrome-mediated responses of light-and dark-grown turions. J. Plant Physiol. 132, 90–93

    Google Scholar 

  • Appenroth, K.-J., Hertel, W., Jungnickel, F., Augsten, H. (1989a) Influence of nutrient deficiency and light on turion formation in Spirodela polyrhiza (L.) Schleiden. Biochem. Physiol. Pflanzen 184, 395–403

    Google Scholar 

  • Appenroth, K.-J., Opfermann, J., Hertel, W., Augsten, H. (1989b) Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. II. Influence of after-ripening on germination kinetics. J. Plant Physiol. 135, 274–279

    Google Scholar 

  • Appenroth, K.-J., Hertel, W., Augsten, H. (1990a) Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. The cause of germination inhibition by overcrowding. Biol. Plant. 32, 420–428

    Google Scholar 

  • Appenroth, K.-J., Klinger, R., Wetzker, R., Augsten, H. (1990b) Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden. IV. Importance of calcium and calmodulin. Biochem. Physiol. Pfl. 186, 209–219

    Google Scholar 

  • Bernfeld, P. (1945) Amylases, α and β. Methods Enzymol. 1, 149–158

    Google Scholar 

  • Bossen, M.E., Dassen, H.H.A., Kendrick, R.E., Vredenberg, W.J. (1988) The role of calcium ions in phytochrome-controlled swelling of etiolated wheat (Triticum aestivum L.) protoplasts. Planta 174, 94–100

    Google Scholar 

  • Bush, D.S., Jones, R.L. (1988) Cytoplasmic calcium and α-amylase secretion from barley aleurone protoplasts. Eur. J. Cell Biol. 46, 466–469

    Google Scholar 

  • Bush, D.S., Sticher, L., van Huystee, R., Wagner, D., Jones, R. (1989) The calcium requirement for stability and enzymatic activity of two isoforms of barley aleurone α-amylase. J. Biol. Chem. 264, 19392–19398

    Google Scholar 

  • Cone, J.W., Kendrick, R.E. (1986) Photocontrol of seed germination. In: Photomorphogenesis in plants, pp. 443–465, Kendrick, R.E., Kronenberg, G.H.M., eds. Martinus Nijhoff, Dordrecht

    Google Scholar 

  • Doehlert, D.C., Duke, S.H. (1983) Specific determination of α-amylase activity in crude plant extracts containing β-amylase. Plant Physiol. 71, 229–234

    Google Scholar 

  • Dürr, S., Scheuerlein, R. (1990) Characterization of a calcium-requiring phase during phytochrome-mediated fern-spore germination of Dryopteris paleacea Sw. Photochem. Photobiol. 52, 73–82

    Google Scholar 

  • Einspahr, K.J., Thompson, Jr., G.A. (1990) Transmembrane signalling via phosphatidylinositol 4,5-bisphosphate hydrolysis in plants. Plant Physiol. 93, 361–366

    Google Scholar 

  • Färber, E., Kandeler, R. (1989) Significance of calcium ions in the overcrowding effect in Spirodela polyrrhiza P143. J. Plant Physiol. 135, 94–98

    Google Scholar 

  • Furuya, M., Hopkins, W.G., Hillman, W.S. (1965) Effects of metalcomplexing and sulfhydryl compounds on nonphotochemical phytochrome changes in vivo. Arch. Biochem. Biophys. 112, 180–186

    Google Scholar 

  • Haas, C.J., Scheuerlein, R., Roux, S.J. (1991) Phytochrome-mediated germination and early development in spores of Dryopteris filix-mas L.: Phase-specific and non phase-specific inhibition by staurosporine. J. Plant Physiol., in press

  • Hartmann, E., Weber, M. (1988) Storage of the phytochrome-mediated phototropic stimulus of moss protonemal tip cells. Planta 175, 39–49

    Google Scholar 

  • Hecht, U., Mohr, H. (1990) Relationship between phytochrome photoconversion and response. Photochem. Photobiol. 51, 369–373

    Google Scholar 

  • Henssen, A. (1954) Die Dauerorgane von Spirodela polyrrhiza (L.) SCHLEID. in physiologischer Betrachtung. Flora 141, 523–566

    Google Scholar 

  • Hilhorst, H.W.M., Karssen, C.M. (1989) Nitrate reductase independent stimulation of seed germination in Sisymbrium officinale L. (Hedge mustard) by light and nitrate. Ann. Bot. 63, 131–137

    Google Scholar 

  • Huff, A.K., Ross, C.W. (1975) Promotion of radish cotyledon enlargement and reducing sugar content by zeatin and red light. Plant Physiol. 56, 429–433

    Google Scholar 

  • Iino, M., Endo, M., Wada, M. (1989) The occurrence of a Ca2+-dependent period in the red light-induced late G1 phase of germinating Adiantum spores. Plant Physiol. 91, 610–616

    Google Scholar 

  • Lehle, L. (1990) Phosphatidyl inositol metabolism and its role in signal transduction in growing plants. Plant Mol. Biol. 15, 647–658

    Google Scholar 

  • Lew, R.R., Serlin, B.S., Schauf, C.L., Stockton, M.E. (1990) Calcium activation of Mougeotia potassium channels. Plant Physiol. 92, 831–836

    Google Scholar 

  • Maurer, H.R. (1968) Disk-Elektrophorese. Theorie und Praxis der diskontinuierlichen Polyacrylamidgel-Elektrophorese. Walter de Gruyter, Berlin

    Google Scholar 

  • Mohr, H. (1972) Lectures on photomorphogenesis. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mohr, H. (1984) Criteria for photoreceptor involvement. In: Techniques in photomorphogenesis, pp. 13–42, Smith, H., Holmes, M.G., eds. Academic Press, London

    Google Scholar 

  • Mohr, H. (1988) Control of plant development: Signals from without — signals from within. Bot. Mag. Tokyo 101, 79–101

    Google Scholar 

  • Moysset, L., Simon, E. (1990) Effect of EGTA on nyctinastic closure mediated by phytochrome in Albizzia lophantha. Plant Cell Physiol. 31, 187–193

    Google Scholar 

  • Oelmüller, R., Mohr, H. (1984) Induction versus modulation in phytochrome-regulated biochemical processes. Planta 161, 165–171

    Google Scholar 

  • Radola, J.B. (1974) Isoelectric focusing in layers of granulated gels. II. Preparative isoelectric focusing. Biochim. Biophys. Acta 386, 181–195

    Google Scholar 

  • Roblin, G., Fleurat-Lessard, P., Bonmort, J. (1989) Effects of compounds affecting calcium channels on phytochrome-and blue pigment-mediated pulvinar movements of Cassia fasciculata. Plant Physiol. 90, 697–701

    Google Scholar 

  • Roux, S.J., Wayne, R.O., Datta, N. (1986) Role of calcium ions in phytochrome responses: an update. Physiol. Plant. 66, 344–348

    Google Scholar 

  • Ruiz-Herrera, J., Martinez-Cadena, G., Valenztuela, C., Reyna, G. (1990) Possible roles of calcium and calmodulin in the light-stimulation of wall biosynthesis in Phycomyces. Photochem. Photobiol. 51, 217–222

    Google Scholar 

  • Scheuerlein, R., Wayne, R., Roux, S.J. (1989) Calcium requirement of phytochrome-mediated fern-spore germination: No direct phytochrome-calcium interaction in the phytochrome-initiated transduction chain. Planta 178, 25–30

    Google Scholar 

  • Sharma, R., Schopfer, P. (1987) Phytochrome-mediated regulation of β-amylase mRNA level in mustard (Sinapis alba L.) cotyledons. Planta 171, 313–320

    Google Scholar 

  • Shropshire, W., Jr., Mohr, H., eds. (1983) Encyclopedia of plant physiology, N.S., vol. 16: Photomorphogenesis. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Stenz, H.-G., Weisenseel, M.H. (1986) Phytochrome mediates a reduction of the surface charge of Mesotaenium cells. J. Plant Physiol. 122, 159–168

    Google Scholar 

  • Takau, K., Ogawa, K., Yamashita, S., Kan, S., Ishikawa, K. (1988) Protein synthesis during the germination of turion in Spirodela polyrrhiza. J. Fac. Sc. Hokkaido Univ. Ser. V. 14, 125–134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We thank Professors H. Mohr, E. Schäfer and P. Schopfer, University of Freiburg, FRG, and Dr. R. Scheuerlein, University of Erlangen, FRG, for stimulating discussions, and Mrs. B. Liebermann and R. Horn for skillful technical assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appenroth, K.J., Komusiewicz, J., Hertel, W. et al. Photophysiology of turion germination in Spirodela polyrhiza (L.) Schleiden VIII. Calcium dependence and β-amylase activity. Planta 186, 81–87 (1991). https://doi.org/10.1007/BF00201501

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201501

Key words

Navigation