Skip to main content
Log in

Perception of breath components by the tropical bont tick, Amblyomma variegatum Fabricius (Ixodidae)

I. CO2-excited and CO2-inhibited receptors

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Wall-pore olfactory sensilla located in the capsule of Haller's organ on the tarsus of Amblyomma variegatum ticks bear cells responding to vertebrate breath: one of these sensilla contains a CO2-excited receptor and a second sensillum has a CO2- inhibited receptor. Each of these antagonistic CO2-receptors, which display typical phasic-tonic responses, monitors a different CO2-concentration range. The CO2-inhibited receptor is very sensitive to small concentration changes between 0 and ca. 0.2%, but variations of 0.01% around ambient (ca. 0.04%) induce the strongest frequency modulation of this receptor. An increase of just 0.001–0.002% (10–20 ppm) above a zero CO2-level already inhibits this receptor. By contrast, the CO2-excited receptor is not so sensitive to small CO2 shifts around ambient, but best monitors changes in CO2 concentrations above 0.1%. This receptor is characterized by a steep dose-response curve and a fast inactivation even at high CO2-concentrations (>2%). In a wind-tunnel, Amblyomma variegatum is activated from the resting state and attracted by CO2 concentrations of 0.04 to ca. 1%, which corresponds to the sensitivity range of its CO2-receptors. The task of perceiving the whole concentration range to which this tick is attracted would thus appear to be divided between two receptors, one sensitive to small changes around ambient and the other sensitive to the higher concentrations normally encountered when approaching a vertebrate host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altner H, Sass H, Altner I (1977) Relationship between structure and function of antennal chemo-, hygro, and thermoreceptive sensilla in Periplaneta americana. Cell Tissue Res 176:389–405

    Google Scholar 

  • Bernard J (1974) Etude électrophysiologique de récepteurs impliqués dans l'orientation vers l'hôte et dans l'acte hématophage chez un hémiptère: Triatoma infestons. Thèse Université de Rennes (France)

    Google Scholar 

  • Bogner F (1989) Single cell recordings of antennal CO2-receptors in tsetse flies. Verh Dt Zool Ges 82:272–273

    Google Scholar 

  • Bogner F (1990) Sensory physiological investigation of carbon dioxide receptors in Lepidoptera. J Insect Physiol 36:951–957

    Article  Google Scholar 

  • Bogner F, Boppré M, Ernst K-D, Boeckh J (1986) CO2 sensitive receptors on labial palps of Rhodogastria moths (Lepidoptera: Arctiidae): physiology, fine structure and central projection. J Comp Physiol A 158:741–749

    CAS  PubMed  Google Scholar 

  • Fallis AM, Raybould JN (1975) Response of two African simuliids to silhouettes and carbon dioxide. J Med Entomol 12:349–351

    Google Scholar 

  • French FE, Kline DL (1989) 1-octen-3-ol, an effective attractant for Tabanidae (Diptera). J Med Entomol 26:459–461

    Google Scholar 

  • Garcia R (1962) Carbon dioxide as an attractant for certain ticks (Acarina, Argasidae and Ixodidae). Ann Entomol Soc Am 14:605–606

    Google Scholar 

  • Garcia R (1965) Collection of Dermacentor andersoni (Stiles) with carbon dioxide and its application in studies of Colorado tick virus. Am J Trop Med Hyg 14:1090–1093

    Google Scholar 

  • Gillies MT, Wilkes TJ (1968) A comparison of the range of attraction of animal baits and of carbon dioxide for some West African mosquitoes. Bull Entomol Res 59:441–456

    Google Scholar 

  • Gödde J (1985) Low cost storing of two electrical biosignals from DC to 20 kHz at more than 80 dB dynamic range. Pflügers Arch 403:324–327

    Google Scholar 

  • Gödde J (1989) Vibrating glass stylets: tools for precise microsurgery on cuticular structures. J Neurosci Methods 29:77–89

    Google Scholar 

  • Gray JS (1985) A carbon dioxide trap for prolonged sampling of Ixodes ricinus L. populations. Exp Appl Acarol 1:35–44

    Google Scholar 

  • Guglielmone AA, Moorhouse DE, Wolf G (1985) Attraction to carbon dioxide of unfed stages of Amblyomma triguttatum triguttatum Koch, under field conditions. Acarologia 26:123–129

    Google Scholar 

  • Hess E, Loftus R (1984) Warm and cold receptors of two sensilla on the foreleg tarsi of the tropical bont tick Amblyomma variegatum. J Comp Physiol A 155:187–195

    Google Scholar 

  • Hess E, Vlimant M (1982) The tarsal sensory system of Amblyomma variegatum Fabricius (Ixodidae, Metastriata). I. Wall pore and terminal pore sensilla. Rev Suisse Zool 89:713–729

    Google Scholar 

  • Hess E, Vlimant M (1983) The tarsal sensory system of Amblyomma variegatum Fabricius (Ixodidae, Metastriata). III. Mapping of sensory hairs and evolution of the relative importance of sensory modalities during post-embryonic development. Rev Suisse Zool 90:887–897

    Google Scholar 

  • Hess E, Vlimant M (1986) Leg sense organs of ticks. In: Sauer JR, Hair JA (eds) Morphology, physiology, and behavioural biology of ticks. Ellis Horwood, Chicester, pp 361–390

    Google Scholar 

  • Hindley E, Merriman G (1912) The sensory perception of Argas persicus (Oken). Parasitology 5:203–216

    Google Scholar 

  • Holsher KH, Gearhart HL, Barker RW (1980) Electrophysiological responses of three tick species to carbon dioxide in the laboratory and field. Ann Entomol Soc Am 73:288–292

    Google Scholar 

  • Kellogg FE (1970) Water vapour and carbon dioxide receptors in Aedes aegypti. J Insect Physiol 16:99–108

    Article  CAS  PubMed  Google Scholar 

  • Lees AD (1948) The sensory physiology of the sheep tick Ixodes ricinus. J Exp Biol 25:145–207

    Google Scholar 

  • Nevill EM (1964) The role of carbon dioxide as a stimulant and attractant to the sand tampan Ornithodoros savigny (Audouin). Onderstepoort J Vet Res 31:59–68

    Google Scholar 

  • Norval Rai, Yunker CE, Butler JF (1987) Field sampling of unfed adults of Amblyomma hebraeum Koch. Exp Appl Acarol 3:213–217

    Google Scholar 

  • Norval RAI, Yunker CE, Gibson JD, Deem SLD (1988) Field sampling of unfed nymphs of Amblyomma hebraeum. Exp Appl Acarol 4:173–177

    Google Scholar 

  • Osbrink WLA, Rust MK (1985) Cat flea (Siphonaptera: Pulicidae): Factors influencing host-finding behavior in the laboratory. Ann Entomol Soc Am 78:29–34

    Google Scholar 

  • Palade GE (1952) A study of fixation for electron microscopy. J Exp Med 95:285

    Google Scholar 

  • Sabatini DD, Bensch KG, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58

    Google Scholar 

  • Sauer JR, Hair JA, Houts MS (1974) Chemo-attraction in the lone star tick (Acarina: Ixodidae). 2. Responses to various concentrations of CO2. Ann Entomol Soc Am 67:150–152

    Google Scholar 

  • Sinitsina EE (1974) Electrophysiological reactions of the neurons of the Haller's organ to the odour stimuli in the tick Hyalomma asiaticum. Parazitologiya 8:223–226

    Google Scholar 

  • Smith JJB, Mitchell BK, Rolseth BM, Whitehead AT, Alben PJ (1990) SAPID tools: microcomputer programs for analysis of multi-unit nerve recordings. Chem Senses 15:253–270

    Google Scholar 

  • Stämpfli N (1987) Etude des facteurs intervenant dans la phase initiale du comportement de recherche de l'hôte, chez la tique, Amblyomma variegatum, Fabricius 1794 (Acarina: Ixodidae). Thèse Université de Neuchâtel

  • Stange G (1974) Linear relation between stimulus concentration and primary transduction process in insect CO2-receptors. In: Denton DA, Coghan JP (eds) Olfaction and Taste V. Pergamon Press, London, pp 207–211

    Google Scholar 

  • Steullet P, Guerin PM (1992) Perception of breath components by the tropical bont tick Amblyomma variegatum Fabricius (Ixodidae). II. Sulfide-receptors. J Comp Physiol A 170:677–685

    Google Scholar 

  • Turner DA (1971) Olfactory perception of live hosts and carbon dioxide by the tsetse fly Glossina morsitans orientalis Vanderplank. Bull Entomol Res 61:75–96

    Google Scholar 

  • Waladde SM, Rice MJ (1982) The sensory basis of tick feeding behaviour. In: Obenchain FD, Galun R (eds) Physiology of ticks. Pergamon Press, Oxford New York Toronto, pp 71–118

    Google Scholar 

  • Warnes ML, Finlayson LH (1985) Responses of the stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae) to carbon dioxide and host odours. 2. Orientation. Bull Entomol Res 75:717–727

    Google Scholar 

  • Warnes ML, Finlayson LH (1986) Electroantennogram responses of the stable fly, Stomoxys calcitrans, to carbon dioxide and other odours. Physiol Entomol 11:469–473

    Google Scholar 

  • Wilson JG, Kinzer DR, Sauer JR, Hair JA (1972) Chemoattraction of the lone star tick (Acarina, Ixodidae). I. Response of different developmental stages to carbon dioxide administered via traps. J Med Entomol 9:245–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steullet, P., Guerin, P.M. Perception of breath components by the tropical bont tick, Amblyomma variegatum Fabricius (Ixodidae). J Comp Physiol A 170, 665–676 (1992). https://doi.org/10.1007/BF00198976

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198976

Key words

Navigation