Skip to main content
Log in

Analysis of the electrical responses of antennal thermo- and hygroreceptors of Antheraea (Saturniidae, Lepidoptera) to thermal, mechanical, and electrical stimuli

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Antennal styloconic thermo-hygro sensilla of Antheraea were studied with DC-coupled transepithelial recordings. — The transepithelial voltage changed by about 2 mV · °C−1. The spike frequency of the cold cell reached 300 Hz at the onset of negative temperature steps, but only 30 Hz at static temperatures (as with metal electrodes). The cold cell spikes showed a brief afterhyperpolarization that increased with temperature. The spikes of the cold- and warm-stimulated cells facilitated each other at low temperature. Mechanical stimuli (push against the sensillum, hydrostatic pressure of < ± 50 kPa, ultrasonic vibrations ≈ 120 kHz) modified the responses of the cold- and the warm-stimulated cells. Latency of cold cell responses to ultrasonic stimulation was occasionally less than 3 ms. — The impulse frequencies of the warm and the cold cells depend on the temperature and the magnitude of temperature change. When the firing rate is high enough by either or both of these parameters, it can be forced still higher by application of clamp current (outside positive). The higher the firing rate prior to clamping, the greater the effect of the current. — By analogy with sensilla for other modalities, this relationship between frequency and clamp current strongly suggests that stimulus-dependent changes in the conductance of dendritic membranes control the excitation of the warm and cold cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DC :

direct voltage

TER :

transepithelial slope resistance between recording electrode and reference electrode in the hemolymph

NTC :

thermistor with negative temperature coefficient

TEV :

transepithelial voltage between electrodes

THS :

thermo-hygro sensillum

References

  • Altner H, Loftus R (1985) Ultrastructure and function of insect thermo- and hygroreceptors. Annu Rev Entomol 30:273–295

    Google Scholar 

  • Altner H, Schaller-Selzer L, Stetter H, Wohlrab I (1983) Poreless sensilla with inflexible sockets. A comparative study of a fundamental type of insect sensilla probably comprising thermo- and hygroreceptors. Cell Tissue Res 234:279–307

    Google Scholar 

  • Ameismeier F, Loftus R (1988) Response characteristics of cold cell on the antenna of Locusta migratoria L. J Comp Physiol A 163:507–516

    Google Scholar 

  • Bolotina V, Omelyanenko V, Heyes B, Ryan U, Bregestovsky P (1989) Variations of membrane cholesterol alter the kinetics of Ca2+-dependent K+ channels and membrane fluidity in vascular smooth muscle cells. Pflügers Arch 415:262–268

    Google Scholar 

  • Corbière-Tichané G, Loftus R (1983) Antennal cold and warm receptors of the cave beetle, Speophyes lucidulus Delar, in sensilla with lamellated dendrite. II. Cold receptor response to slowly changing temperature. J Comp Physiol 153:343–351

    Google Scholar 

  • Deitmer JW (1981) Voltage and time characteristics of the potassium mechanoreceptor current in the ciliate Stylonychia. J Comp Physiol 141:173–182

    Google Scholar 

  • Erler G, Thurm U (1981) Dendritic impulse initiation in an epithelial sensory neuron. J Comp Physiol 142:237–249

    Google Scholar 

  • Gödde J (1984) Ultrasound elicits tonic responses and diminishes phasic responses to adequate stimuli in thread-hair mechanoreceptors of Acheta domesticus. Biophys Struct Mech 10:275–296

    Google Scholar 

  • Gödde J (1985) Low cost storing of two electrical biosignals from DC to 20 kHz at more than 80 dB dynamic range. Pflügers Arch 403:324–327

    Google Scholar 

  • Gödde J (1989) Vibrating glass stylets: tools for precise microsurgery on cuticular structures. J Neurosci Meth 29:77–83

    Google Scholar 

  • Gödde J, Hintzpeter U (1989) An unusual low-current receptor-circuit in the trap setae of the prey apparatus of Loricera pilicornis (Carabidae, Coleoptera). J Comp Physiol A 165:779–787

    Google Scholar 

  • Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701

    Google Scholar 

  • Guillet JC, Bernard J (1972) Shape and amplitude of the spikes induced by natural or electrical stimulation in insect receptors. Insect Physiol 18:2155–2171

    Google Scholar 

  • Guillet JC, Bernard J, Coillot JP, Callec JJ (1980) Electrical properties of the dendrite in an insect mechanoreceptor: effects of antidromic or direct electrical stimulation. J Insect Physiol 26:755–762

    Google Scholar 

  • Haug T (1985) Ultrastructure of the dendritic outer segments of sensory cells in poreless (‘no-pore’) sensilla of insects. Cell Tissue Res 242:313–322

    Google Scholar 

  • Haug T (1986) Struktur, Funktion und Projektion der antennalen Thermo- und Hygrorezeptoren von Antheraea pernyi (Lepidoptera: Saturniidae). Dissertation Thesis, University of Regensburg, FRG

    Google Scholar 

  • Hodgson ES, Roeder KD (1956) Electrophysiological studies of arthropod chemoreception. J Cell Comp Physiol 48:51–76

    Google Scholar 

  • Holton T, Hudspeth AJ (1986) The transduction channel of hair cells from the bull-frog characterized by noise analysis. J Physiol 375:195–227

    Google Scholar 

  • Keil TA (1984) Very tight contact of tormogen cell membrane and sensillum cuticle: ultrastructural basis of high electrical resistance between receptor lymph and subcuticular spaces in silkmoth olfactory hairs. Tissue Cell 16:131–135

    Google Scholar 

  • Keil TA, Steinbrecht RA (1984) Mechanosensitive and olfactory sensilla of insects. In: King RC, Akai (eds) Insect ultrastructure, vol II. Plenum, New York, pp 477–516

    Google Scholar 

  • Kirber MT, Walsh JV, Singer JJ (1988) Stretch-activated ion channels in smooth muscle: a mechanism for the initiation of stretchinduced contraction. Pflügers Arch 412:339–345

    Google Scholar 

  • Lenaz G (1987) Membrane proteins and lipid protein interactions. In: Bertoli E, Chapman D, Cambria A, Scapagnini U (eds) Biomembrane and receptor mechanisms. Springer, Berlin Heidelberg New York, pp 113–133

    Google Scholar 

  • Loftus R (1968) The response of the antennal cold receptor of Periplaneta americana to rapid temperature changes and to steady temperature. Z Vergl Physiol 59:413–455

    Google Scholar 

  • Loftus R (1969) Differential thermal components in the response of the antennal cold receptor of Periplaneta american to slowly changing temperature. Z Vergl Physiol 63:415–433

    Google Scholar 

  • Loftus R, Corbière-Tichané G (1981) Antennal cold and warm receptors of the cave beetle, Speophyes lucidulus Delar, in sensilla with lamellated dendrite. I. Response to sudden temperature change. J Comp Physiol 143:443–452

    Google Scholar 

  • Loftus R, Corbière-Tichané G (1987) Response of antennal cold receptors of the catopid beetles, Speophyes lucidus Delar, and Choleva angustata Fab. to very slowly changing temperature. J Comp Physiol A 161:399–405

    Google Scholar 

  • Morita H (1972) Primary processes of insect chemoreception. Adv Biophys 3:161–198

    Google Scholar 

  • Sackmann E (1982) Physikalische Grundlagen der molekularen Organisation und Dynamik von Membranen. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin Heidelberg New York, pp 439–471

    Google Scholar 

  • Schäfer K, Braun HA, Hensel H (1986) Temperature transduction in the skin. In: Hales JRS (ed) Thermal physiology. Raven Press, New York, pp 1–11

    Google Scholar 

  • Steinbrecht RA (1984) Chemo-, hygro-, and thermoreceptors. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument. Invertebrates. Springer, Berlin Heidelberg New York, pp 523–553

    Google Scholar 

  • Steinbrecht RA (1989) Thermo-/hygrosensitive sensilla in the silkmoth Bombyx mori fine structure indicates peripheral interactions between sensory neurons. Cell Tissue Res 255:49–57

    Google Scholar 

  • Steinbrecht RA, Lee J-K, Altner H, Zimmermann B (1989) Volume and surface of receptor and auxiliary cells in hygro-/thermoreceptive sensilla in moths (Bombyx mori, Antheraea pernyi and A. polyphemus). Cell Tissue Res 255:59–67

    Google Scholar 

  • Thurm U (1974) Basics of the generation of receptor potentials in epidermal mechanoreceptors of insects. In: Schwartzkopff J (ed) Mechanoreception. Abh Rhein.-Westf Akad Wiss, Opladen, pp 355–385

    Google Scholar 

  • Thurm U, Küppers J (1980) Epithelial physiology in insect sensilla. In: Locke M, Smith DS (eds) Insect biology in the future. Academic Press, New York, pp 735–763

    Google Scholar 

  • Tichy H, Loftus R (1987) Response characteristics of a cold receptor in the stick insect Carausius morosus. J Comp Physiol A 160:33–42

    Google Scholar 

  • Yokohari F (1978) Hygroreceptor mechanism in the antenna of the cockroach Periplaneta. J Comp Physiol 124:53–60

    Google Scholar 

  • Yokohari F (1981) The sensillum capitulum, an antennal hygro- and thermoreceptive sensillum of the cockroach, Periplaneta americana L. Cell Tissue Res 216:525–543

    Google Scholar 

  • Yokohari F, Tateda H (1976) Moist and dry hygroreceptors for relative humidity of the cockroach, Periplaneta americana L. J Comp Physiol 106:137–152

    Google Scholar 

  • Zimmermann B (1987) Morphologische Untersuchungen zur Characterisierung von Temperatur- und Feuchte-empfindlichen Zellen in Sensillen auf der Antenne von Antheraea. Diploma Thesis, University of Regensburg, FRG

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gödde, J., Haug, T. Analysis of the electrical responses of antennal thermo- and hygroreceptors of Antheraea (Saturniidae, Lepidoptera) to thermal, mechanical, and electrical stimuli. J Comp Physiol A 167, 391–401 (1990). https://doi.org/10.1007/BF00192574

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192574

Key words

Navigation