Skip to main content
Log in

The responses of central octavolateralis cells to moving sources

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Mechanosensory lateral line units recorded from the medulla (medial octavolateralis nucleus) and midbrain (torus semicircularis) of the bottom dwelling catfish Ancistrus sp. responded to water movements caused by an object that passed the fish laterally. In terms of peak spike rate or total number of spikes elicited responses increased with object speed and sometimes showed saturation (Figs. 7, 14). At sequentially greater distances the responses of most medullary lateral line units decayed with object distance (Fig. 11). Units tuned to a certain object speed or distance were not found. The signed directionality index of most lateral line units was between −50 and +50, i.e. these units were not or only slightly sensitive to the direction of object motion (Figs. 10, 17). However, some units were highly directionally sensitive in that the main features of the response histograms and/or peak spike rates clearly depended on the direction of object movement (e.g. Fig. 9C, D and Fig. 16). Midbrain lateral line units of Ancistrus may receive input from more than one sensory modality. All bimodal lateral line units were OR units, i.e., the units were reliably driven by a unimodal stimulus of either modality. Units which receive bimodal input may show an extended speed range (e.g. Fig. 18).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MON :

medial octavolateralis nucleus

MSR :

mean spike rate

PSR :

peak spike rate

p-p :

peak-to-peak

SDI :

signed directionality index

References

  • Bartels M, Münz H, Claas B (1990) Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. J Comp Physiol A 167: 347–356

    Google Scholar 

  • Bastian J (1981a) Electrolocation I. How the electroreceptors of Apteronotus albifrons code for moving objects and other electrical stimuli. J Comp Physiol 144: 465–479

    Google Scholar 

  • Bastian J (1981b) Electrolocatiion II. The effects of moving objects and other electrical stimuli on the activities of two categories of posterior lateral line lobe cells in Apteronotus albifrons. J Comp Physiol 144: 481–494

    Google Scholar 

  • Bastian J (1982) Vision and electroreception: Integration of sensory information in the optic tectum of the weakly electric fish Apteronotus albifrons. J Comp Physiol 147: 287–297

    Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. G Fischer, Stuttgart Jena New York pp 1–115

    Google Scholar 

  • Bleckmann H, Bullock TH (1989) Central physiology of the lateral line system, with special reference to elasmobranchs. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution, Springer, New York, pp 387–408

    Google Scholar 

  • Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Naturwissenschaften 68: 624–625

    Google Scholar 

  • Bleckmann H, Bullock TH, Jørgensen JM (1987) The lateral line mechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J Comp Physiol A 161: 67–84

    Google Scholar 

  • Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172: 115–128

    Google Scholar 

  • Bleckmann H, Weiss O, Bullock TH (1989) Physiology of lateral line mechanoreceptive regions in the elasmobranch brain. J Comp Physiol A 164: 459–474

    Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991a) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol A 168: 749–757

    Google Scholar 

  • Bleckmann H, Niemann U, Fritzsch B (1991b) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp. J Comp Neurol 314: 452–466

    Google Scholar 

  • Bleckmann H, Borchardt M, Horn P, Görner P (1994) Stimulus discrimination and wave source localization in fishing spiders (Dolomedes triton and D. okefinokensis). J Comp Physiol A 174: 305–316

    Google Scholar 

  • Bleckmann H, Mogdans J, Fleck A (1996) Integration of hydrodynamic information in the hindbrain of fishes. Mar Freshw Behav Physiol 27: 77–94

    Google Scholar 

  • Blickhan R, Krick C, Breithaupt T, Zehren D, Nachtigall W (1992) Generation of a vortex-chain in the wake of a subundulatory swimmer. Naturwissenschaften 79: 220–221

    Google Scholar 

  • Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol 127: 61–74

    Google Scholar 

  • Campenhausen C von, Reiss I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol 143: 369–374

    Google Scholar 

  • Claas B (1980) Die Projektionsgebiete des Rumpfseitenliniensystems von Sarotherodon niloticus L. (Cichlidae, Teleostei): Neuroanatomische und neurophysiologische Untersuchungen. Dissertation, Universität Bielefeld

  • Claas B, Münz H, Zittlau KE (1989) Direction coding in central parts of the lateral line system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution, Springer, New York, pp 409–419

    Google Scholar 

  • Coombs S (1994) Nearfield detection of dipole sources by the gold-fish (Carassius auratus) and the mottled sculpin (Cottus bairdi). J Exp Biol 190: 109–129

    Google Scholar 

  • Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167: 557–567

    Google Scholar 

  • Coombs S, Montgomery J (1992) Fibers innervating different parts of the lateral line system of an Antarctic Notothenioid, Trematomus bernachii, have similar frequency responses despite large variation in the peripheral morphology. Brain Behav Evol 40: 217–233

    Google Scholar 

  • Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178: 359–371

    Google Scholar 

  • Davenport CJ, Caprio J (1982) Taste and tactile recordings from the ramus recurrens facialis innervating flank taste buds in the catfish. J Comp Physiol 147: 217–229

    Google Scholar 

  • Dowben RM, Rose JE (1953) A metal-filled microelectrode. Science 118: 22–24

    Google Scholar 

  • Echteler SM (1985) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol A 156: 267–280

    Google Scholar 

  • Enger PS, Kalmijn AJ, Sand O (1989) Behavioral investigations of the functions of the lateral line and inner ear in predation. In Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 575–587

    Google Scholar 

  • Finger TE, Bullock TH (1982) Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: Evoked potential evidence. J Neurobiol 13: 39–47

    Google Scholar 

  • Hassan ES (1986) On the dicrimination of spatial intervals by the blind cave fish (Anoptichthys jordani). J Comp Physiol A 159: 701–710

    Google Scholar 

  • Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 217–228

    Google Scholar 

  • Knudsen EI (1976a) Midbrain responses to electroreceptive input in catfish: evidence of orientation preferences and somatotopic organization. J Comp Physiol 106: 51–67

    Google Scholar 

  • Knudsen EI (1976b) Midbrain units in catfish. Response properties to electoreceptive input. J Comp Physiol 109: 315–335

    Google Scholar 

  • Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173: 417–432

    Google Scholar 

  • Lamb CF, Caprio J (1993) Taste and tactile responsiveness of neurons in the posterior diencephalon of the channel catfish. J Comp Neurol 337: 419–430

    Google Scholar 

  • Lighthill J (1980) Waves in fluids. Cambridge University Press, Cambridge

    Google Scholar 

  • Marui T, Caprio J, Kijohara S, Kasahara Y (1988) Topographical organization of taste and tactile neurons in the facial lobe of the sea catfish, Plotosus lineatus. Brain Res 446: 178–182

    Google Scholar 

  • McCormick CA (1989) Central lateral line mechanosensory path-ways in bony fish. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution, Springer, New York, pp 341–364

    Google Scholar 

  • Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Letters 174: 145–148

    Google Scholar 

  • Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planctonic prey. Science 235: 195–196

    Google Scholar 

  • Montgomery JC, Macdonald JA, Housley GD (1988) Lateral line function in an antarctic fish related to the signals produced by planktonic prey. J Comp Physiol A 163: 827–833

    Google Scholar 

  • Münz H (1979) Morphology and innervation of the lateral line system in Sarotherodon niloticus L. (Cichlidae, Teleostei). Zoomorphology 93: 73–86

    Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157: 555–568

    Google Scholar 

  • Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 285–298

    Google Scholar 

  • Nederstigt LJA, Schellart NAM (1986) Acousticolateral processing in the torus semicircularis of the trout Salmo gairdneri. Pflueg Arch 406: 151–157

    Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 17–78

    Google Scholar 

  • Plassmann W (1980) Central neuronal pathways in the lateral line system of Xenopus laevis. J Comp Physiol 136: 203–213

    Google Scholar 

  • Roberts BL, Meredith GE (1989) The efferent system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 445–459

    Google Scholar 

  • Rudolph P (1967) Zum Ortungsverfahren von Gyrinus substiatus Steph. Z Vergl Physiol 56: 341–375

    Google Scholar 

  • Sand O (1981) The lateral line and sound reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 459–481

    Google Scholar 

  • Schellart NAM, Kroese ABA (1989) Interrelationship of acousticolateral and visual sytems in teleost midbrain. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 421–443

    Google Scholar 

  • Shanglian T, Bullock TH (1984) Physiological properties of the electro- and mechanoreceptors in catfish Ictalurus nebulosus. Scientia Sinica 10: 1023–1028

    Google Scholar 

  • Song J (1989) The lateral line system in the Florida gar, Lepisosteus platyrhincus Dekay. Dissertation, University of Michigan

  • Stock C, Claas B, Münz H (1990) Surface wave detection by means of lateral line and somatosensory system. In: Elsner N, Roth G (eds) Brain, perception, cognition. Proc 18th Göttingen Neurobiology Conf. Thieme, Stuttgart, p 166

    Google Scholar 

  • Striedter GF (1991) Auditory, electrosensory, and mechanosensory lateral line pathways through the diencephalon and telencephalon of channel catfish. J Comp Neurol 312: 311–331

    Google Scholar 

  • Suga N (1967) Electrosensitivity of canal and free neuromast organs in a gynmotid electric fish. J Comp Neurol 131: 453–457

    Google Scholar 

  • Teyke T (1985) Collision with and avoidance of obstacles by blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 157: 837–843

    Google Scholar 

  • Tong SL, Bullock TH (1982) The sensory functions of the cerebellum of the thornback ray, Platyrhinoidis triseriata. J Comp Physiol 148: 399–410

    Google Scholar 

  • Topp G (1983) Primary lateral line response to water surface waves in the topminnow Aplocheilus lineatus (Pisces, Cyprinodontidae). Pflueg Arch 397: 62–67

    Google Scholar 

  • Wagner H, Takahashi T (1992) Influence of temporal cues on acous tic motion-direction sensitivity of auditory neurons in the owl. J Neurophysiol 68: 2063–2076

    Google Scholar 

  • Webb JF (1989) Gross morphology and evolution of the mechanoreceptive lateral-line sytem in teleost fishes. Brain Behav Evol 33: 34–53

    Google Scholar 

  • Weissert R, Campenhausen C von (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani. J Comp Physiol 143: 375–382

    Google Scholar 

  • Wubbels RJ (1992) Afferent response of a head canal neuromast of the ruff (Acerina cernua) lateral line. Comp Biochem Physiol A 102: 19–26

    Google Scholar 

  • Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158: 469–477

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, H.M., Fleck, A. & Bleckmann, H. The responses of central octavolateralis cells to moving sources. J Comp Physiol A 179, 455–471 (1996). https://doi.org/10.1007/BF00192313

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192313

Key words

Navigation