Skip to main content

Functional Overlap and Nonoverlap Between Lateral Line and Auditory Systems

  • Chapter
  • First Online:
The Lateral Line System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 48))

Abstract

Sound-producing and moving objects present a wide range of hydrodynamic and acoustic stimuli. The mechanosensory lateral line and inner ear of fishes share an evolutionary history and both utilize displacement-sensitive hair cells. However, despite their common embryological origin and similar sensory cells, there is amazingly little functional overlap between the inner ear and the lateral line. Both systems respond to low-frequency stimuli at short range, but the auditory systems are sensitive also to higher frequencies and are capable of detecting more distant stimuli. There is a great distinction in the mechanisms of stimulus transduction and the specific hydrodynamic properties relevant to each sense. The inner ear is capable of detecting both hydrodynamic forces and the minute particle fluctuations associated with far field acoustics, while the lateral line is sensitive only to hydrodynamic forces in the spatially inhomogeneous near field very close to the source. In addition, the lateral line can detect the long-lived, turbulent wake of swimming fish. Consequently, each sense is used differently in behavioral contexts such as predation and predator avoidance, orientation to currents, communication, and navigation. The pathways of information flow in the central nervous system are correspondingly discrete, with integration occurring in the midbrain and possibly in the telencephalon. The Mauthner network is an illustration of one type of integrative center that reflects an overlap of function, but the general differences in behavioral function of these two senses predict that substantial neuronal integration occurs only at higher levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aquino, A. E., & Schaefer, S. A. (2002). The temporal region of the cranium of loricarioid catfishes (Teleostei: Siluriformes): Morphological diversity and phylogenetic significance. Zoologische Anzeiger, 241, 223–244.

    Google Scholar 

  • Ayers, H. (1892). Vertebrate cephalogenesis. II. A contribution to the morphology of the vertebrate ear, with a reconsideration of its functions. Journal of Morphology, 6, 1–360.

    Google Scholar 

  • Baker, C. V. H., O’Neill, P., & McCole, R.B. (2008). Lateral line, otic and epibranchial placodes: Developmental and evolutionary links? Journal of Experimental Zoology, 310B, 370–383.

    Google Scholar 

  • Bass, A. H., & Ladich, F. (2008). Vocal-acoustic communication: From neurons to behavior. In J. F. Webb, A. N. Popper, & R. R. Fay (Eds.), Fish bioacoustics (pp. 253–278). New York: Springer.

    Google Scholar 

  • Bass, A. H., Bodnar, D. A., & Marchaterre, M. A. (2000). Midbrain acoustic circuitry in a vocalizing fish. Journal of Comparative Neurology, 419, 505–531.

    CAS  PubMed  Google Scholar 

  • Bass, A. H., Bodnar, D. A., & Marchaterre, M. A. (2001). Acoustic nuclei in the medulla and midbrain of the vocalizing gulf toadfish (Opsanus beta). Brain Behavior and Evolution, 57, 63–79.

    CAS  Google Scholar 

  • Bleckmann, H. (1994). Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. Progress in Zoology, Vol. 41. Jena, Germany: Gustav Fischer Verlag.

    Google Scholar 

  • Bleckmann H. (2007). The lateral line system of fish. In T. J. Hara & B. S. Zielinski (Eds.), Sensory systems neuroscience (Vol. 25, pp. 411–453), San Diego: Elsevier Academic Press.

    Google Scholar 

  • Bleckmann, H., & Zelick, R. (2009). Lateral line system of fish. International Journal of Zoology, 4, 13–25.

    Google Scholar 

  • Bleckmann, H., Niemann, U., & Fritzsch, B. (1991). Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish, Ancistrus sp. Journal of Comparative Neurology, 314, 452– 466.

    CAS  PubMed  Google Scholar 

  • Braun, C. B. (1996). The sensory biology of the living jawless fishes: A phylogenetic assessment. Brain Behavior and Evolution, 48, 262–276.

    CAS  Google Scholar 

  • Braun, C. B. (2009). Evolution of the mechanosensory and electrosensory lateral line systems. In M. Binder, N. Hirokawa, & U. Windhorst (Eds.), Encyclopedia of neuroscience (pp. 1367–1375). New York: Springer.

    Google Scholar 

  • Braun, C. B., & Coombs, S. (2010). Vibratory sources as compound stimuli for the octavolateralis systems: Dissection of specific stimulation channels using multiple behavioral approaches. Journal of Experimental Psychology-Animal Behavior Processes, 36, 243–257.

    PubMed Central  PubMed  Google Scholar 

  • Braun, C. B., & Grande, T. (2008). Evolution of peripheral mechanisms for the enhancement of sound reception. In J. F. Webb, A. N. Popper, & R. R. Fay (Eds.), Fish bioacoustics (pp. 99–144). New York: Springer.

    Google Scholar 

  • Braun, C. B., Coombs, S. & Fay, R. R. (2002). What is the nature of multisensory interaction between octavolateralis sub-systems? Brain, Behavior and Evolution, 59, 162–176.

    Google Scholar 

  • Brown, A. D., Mussen, T. D., Sisneros, J. A., & Coffin, A. B. (2012). Reevaluating the use of aminoglycoside antibiotics in behavioral studies of the lateral line. Hearing Research, 271, 1–4.

    Google Scholar 

  • Bullock, T. H., & Corwin, J. T. (1979). Acoustic evoked activity in the brain in sharks. Journal of Comparative Physiology A, 129, 223–234.

    Google Scholar 

  • Canfield, J., & Rose, G. (1993). Activation of Mauthner neurons during prey capture. Journal of Comparative Physiology A, 172, 611–618.

    Google Scholar 

  • Casper, B. M., & Mann, D. A. (2006a). Dipole hearing measurements in elasmobranch fishes. Journal of Experimental Biology, 210, 75–81.

    Google Scholar 

  • Casper, B. M., & Mann, D. A. (2006b). Evoked potential audiograms of the nurse shark (Ginglymostoma cirratum) and the yellow stingray (Urobatis jamaicensis). Environmental Biology Fishes, 76, 101–108.

    Google Scholar 

  • Catania, K. C., Leitch, D. B., & Gauthier, D. (2010). Function of the appendages in tentacled snakes (Erpeton tentaculatus). Journal of Experimental Biology, 213, 359–367.

    CAS  PubMed  Google Scholar 

  • Chapman, C. J., & Hawkins, A. D. (1973). A field study of hearing in the cod, Gadus morhua L. Journal of Comparative Physiology, 85, 147–167.

    Google Scholar 

  • Chapman, C. J., & Sand, O. (1974). Field studies of hearing in two species of flatfish Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae). Comparative Biochemistry and Physiology A, 47, 371–385.

    CAS  Google Scholar 

  • Coleman, S. (2009). Taxonomic and sensory biases in the mate-choice literature: There are far too few studies of chemical and multimodal communication. Acta Ethologica, 12, 45–48.

    Google Scholar 

  • Conley, R. A., & Coombs, S. (1998). Dipole source localization by mottled sculpin. III. Orientation after site-specific, unilateral denervation of the lateral line system. Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology, 183, 335–344. doi:10.1007/s003590050260

    Google Scholar 

  • Coombs, S. (1994). Near field detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). Journal of Experimental Biology, 190, 109–129.

    CAS  PubMed  Google Scholar 

  • Coombs, S., & Janssen, J. (1989). Peripheral processing by the lateral line system of the mottled sculpin (Cottus bairdi). In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and behavior (pp. 299–322). New York: Springer.

    Google Scholar 

  • Coombs, S., & Janssen, J. (1990). Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. Journal of Comparative Physiology A, 167, 557–567.

    CAS  Google Scholar 

  • Coombs, S., & Montgomery, J. C. (1999). The enigmatic lateral line system. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Fish and amphibians (pp. 319–262). New York: Springer.

    Google Scholar 

  • Coombs, S., & Montgomery, J. (2005). Comparing octavolateralis sensory systems: What can we learn? In T. H. Bullock, C. D. Hopkins, A. N. Popper, & R. R. Fay (Eds.), Electroreception (pp. 318–359). New York: Springer.

    Google Scholar 

  • Coombs, S., & Patton, P. (2009). Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). Journal of Comparative Physiology A, 195, 279–297.

    Google Scholar 

  • Coombs, S., Janssen, J., & Montgomery, J. (1992). Functional and evolutionary implications of peripheral diversity in lateral line systems. In R. R. Fay & A. N. Popper (Eds.), Evolutionary biology of hearing (pp. 267–294). New York: Springer.

    Google Scholar 

  • Coombs, S., Hastings, M., & Finneran, J. (1996). Modeling and measuring lateral line excitation patterns to changing dipole source locations. Journal of Comparative Physiology A, 178, 359–371.

    CAS  Google Scholar 

  • Coombs, S., Braun, C. B., & Donovan B. (2001). Orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. Journal of Experimental Biology, 204, 337–348.

    CAS  PubMed  Google Scholar 

  • Coombs, S., Fay, R. R., & Elepfandt, A. (2010). Dipole source encoding and tracking by the goldfish auditory system. Journal of Experimental Biology, 213, 3536–3547.

    PubMed  Google Scholar 

  • Dailey, D. D., & Braun, C. B. (2009). The detection of pressure fluctuations, sonic audition, is the dominant mode of dipole-source detection in goldfish (Carassius auratus). Journal of Experimental Psychology: Animal Behavior Processes, 35, 212–223.

    PubMed Central  PubMed  Google Scholar 

  • Dailey, D. D., & Braun, C. B. (2011). Perception of frequency, amplitude, and azimuth of a vibratory dipole source by the octavolateralis system of goldfish (Carasssius auratus). Journal of Comparative Psychology, 125, 286–295.

    PubMed Central  PubMed  Google Scholar 

  • Denton, E. J., & Blaxter, J. H. S. (1976). The mechanical relationships between the clupeid swimbladder, inner ear and lateral line. Journal of the Marine Biology Association UK, 56, 787–807.

    Google Scholar 

  • Denton, E. J., & Gray, J. A. B. (1982). The rigidity of fish and patterns of lateral line stimulation. Nature, 297, 679–681.

    CAS  PubMed  Google Scholar 

  • Denton, E. J., & Gray, J. A. B. (1983). Mechanical factors in the excitation of clupeid lateral lines. Proceedings of the Royal Society of London B: Biological Sciences, 218, 1–26.

    Google Scholar 

  • Denton, E. J., & Gray, J. A. B. (1988). Mechanical factors in the excitation of the lateral line of fishes. In J. Atema, R. R. Fay, A. N. Popper & W. N. Tavolga (Eds.), Sensory biology of aquatic animals (pp. 595–618). New York: Springer-Verlag.

    Google Scholar 

  • de Vries, H. L. (1950). The mechanics of labyrinth otoliths. Acta Oto-Laryngologica, 38, 262–273.

    Google Scholar 

  • Dijkgraaf, S. (1963). The Functioning and significance of the lateral-line organs. Biological Review, 38, 51–105.

    CAS  Google Scholar 

  • Eaton, R., & Popper, A. N. (1995). The octavolateralis system and Mauthner cell: Interactions and questions. Brain Behavior and Evolution, 46, 124–130.

    CAS  Google Scholar 

  • Edds-Walton, P. L., & Fay, R. R. (2005). Projections to bimodal sites in the torus semicircularis of the toadfish, Opsanus tau. Brain Behavior and Evolution, 66, 73–87.

    Google Scholar 

  • Enger, P. S., Kalmijn, A. J., & Sand, O. (1989). Behavioral identification of lateral line and inner ear function. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and behavior (pp. 575–587). New York: Springer-Verlag.

    Google Scholar 

  • Faucher, K., Parmentier, E., Becco, C., Vandewalle, N., & Vandewalle, P. (2010). Fish lateral system is required for accurate control of shoaling behaviour. Animal Behaviour, 79, 679–687.

    Google Scholar 

  • Fay, R. R. (1984). The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science, 225, 951–954.

    Google Scholar 

  • Fay, R. R. (1988). Hearing in vertebrates: A psychophysics databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay, R. R., & Popper, A. N. (1974). Acoustic stimulation of the ear of goldfish (Carrassius auratus). Journal of Experimental Biology, 61, 243–260.

    CAS  PubMed  Google Scholar 

  • Fay, R. R., Kendall, J. I., Popper, A. N., & Tester, A. L. (1974). Vibration detection by the macula neglecta of sharks. Comparative Biochemistry and Physiology, 47A, 1235–1240.

    Google Scholar 

  • Forrest, T. G., Miller, G. L., & Zagar, J. R. (1993). Sound propagation in shallow water: Implications for acoustic communication by aquatic animals. Bioacoustics, 4, 259–270.

    Google Scholar 

  • Hanke, W., & Bleckmann, H. (2004). The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. Journal of Experimental Biology, 207, 1585–1596.

    PubMed  Google Scholar 

  • Hanke, W., Brücker, C., & Bleckmann, H. (2000). The ageing of the low frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. Journal of Experimental Biology, 203, 1193–1200.

    CAS  PubMed  Google Scholar 

  • Harris, G. G. (1964). Considerations on the physics of sound production by fishes. In W. N. Tavolga (Ed.), Marine bio-acoustics (pp. 233–247). Oxford: Pergamon Press.

    Google Scholar 

  • Hassan, E. S. (1986). On the discrimination of spatial intervals by the blind cave fish (Anoptichthys jordani). Journal of Comparative Physiology A, 159, 701–710.

    CAS  Google Scholar 

  • Hoekstra, D., & Janssen, J. (1985). Non-visual feeding behavior of the mottled sculpin, Cottus bairdi, in Lake Michigan. Environmental Biology of Fishes, 12, 111–117.

    Google Scholar 

  • Hoekstra, D., & Janssen, J. (1986). Lateral line receptivity in the mottled sculpin (Cottus bairdi). Copeia, 1986, 91–96.

    Google Scholar 

  • Janssen, J. (1997). Comparison of response distance to prey via the lateral line in the ruffe and yellow perch. Journal of Fish Biology, 51, 921–930.

    Google Scholar 

  • Kalmijn, A. J. (1988). Hydrodynamic and acoustic field detection. In J. Atema, R. R. Fay, A. N. Popper & W. N. Tavolga (Eds.), Sensory biology of aquatic animals (pp. 83–130). New York: Springer-Verlag.

    Google Scholar 

  • Kalmijn, A. J. (1989). Functional evolution of lateral line and inner ear sensory systems. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and behavior (pp.187–216). New York: Springer-Verlag.

    Google Scholar 

  • Karlsen, H. E. (1992a). The inner ear is responsible for detection of infrasound in the perch (Perca fluviatilis). Journal of Experimental Biology, 171, 163–172.

    Google Scholar 

  • Karlsen, H. E. (1992b). Infrasound sensitivity in the plaice (Pleuronectes platessa). Journal of Experimental Biology, 171, 173–187.

    Google Scholar 

  • Karlsen, H. E., & Sand, O. (1987). Selective and reversible blocking of the lateral line in freshwater fish. Journal of Experimental Biology, 133, 249–267.

    Google Scholar 

  • Karlsen, H. E., Piddington, R. W., Enger, P. S., & Sand, O. (2004). Infrasound initiates directional fast-start escape responses in juvenile roach Rutilus rutilus. Journal of Experimental Biology, 207, 4185–4193.

    PubMed  Google Scholar 

  • Knudsen, F. R., Enger, P. S., & Sand, O. (1994). Avoidance responses to low frequency sound in downstream migrating Atlantic salmon smolt, Salmo salar L. Journal of Fish Biology, 45, 227–233.

    Google Scholar 

  • Knudsen, F. R., Schreck, C. B., Knapp, S. M., Enger, P. S., & Sand, O. (1997). Infrasound produces flight and avoidance responses in Pacific juvenile salmonids. Journal of Fish Biology, 51, 824–829.

    Google Scholar 

  • Korn, H., & Faber, D. S. (2005). The Mauthner cell half a century later: A neurobiological model for decision-making? Neuron, 47, 13–28.

    CAS  PubMed  Google Scholar 

  • Ladich, F., & Myrberg, A. (2006). Agonistic behavior and acoustic communication. In F. Ladich, S. Collin, P. Moller, & B. Kapoor (Eds.), Communication in fishes (pp. 121–148). Enfield, NH: Science Publishers.

    Google Scholar 

  • Larsell, O. (1967). The comparative anatomy and histology of the cerebellum from Myxinoids through birds. Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Larsson, M. (2009). Possible functions of the octavolateralis system in fish schooling. Fish and Fisheries, 10, 344–353.

    Google Scholar 

  • Liang, X. F., Liu, J. K., & Huang, B. Y. (1998). The role of sense organs in the feeding behavior of Chinese perch. Journal of Fish Biology, 52, 1058–1067.

    Google Scholar 

  • Maruska, K. P., & Tricas, T. C. (2009). Central projections of octavolateralis nerves in the brain of a soniferous damselfish (Abudefduf abdominalis). Journal of Comparative Neurology, 512, 628–650.

    PubMed  Google Scholar 

  • McCormick, C. A. (1992). Evolution of central auditory pathways in anamniotes. In D.B. Webster, R. R. Fay, & A. N. Popper (Eds.), The evolutionary biology of hearing (pp. 323–350). New York: Springer-Verlag.

    Google Scholar 

  • McCormick, C. A. (1999). Anatomy of the central auditory pathways of fish and amphibians. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Fish and amphibians (pp. 155–217). New York: Springer-Verlag.

    Google Scholar 

  • McCormick, C. A., & Hernandez, D. V. (1996). Connections of octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behavior and Evolution, 47, 113–137.

    CAS  Google Scholar 

  • McCormick, C. A., & Wallace, A. C. (2012). Otolith end organ projections to auditory neurons in the descending octaval nucleus of the goldfish, Carassius auratus: A confocal analysis. Brain Behavior and Evolution, 80, 41–63.

    Google Scholar 

  • Miersch, L, Hanke, W., Wieskotton, S., Hanke, F. D., Oeffner, J., Leder, A., Brede, M., Witte, M., & Dehnhardt, G. (2011). Flow sensing by pinniped whiskers. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 366, 3077–3084.

    CAS  PubMed  Google Scholar 

  • Mirjany, M., & Faber, D. S. (2011). Characteristics of the anterior lateral line nerve input to the Mauthner cell. Journal of Experimental Biology, 214, 3368–3377.

    PubMed  Google Scholar 

  • Mirjany, M., Preuss, T., & Faber, D. S. (2011). Role of the lateral line mechanosensory system in directionality of goldfish auditory evoked escape response. Journal of Experimental Biology, 214, 3358–3367.

    PubMed  Google Scholar 

  • Modrell, M., Bemis, W. E., Northcutt, R. G., Davis, M., & Baker, C. (2011). Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nature Communications, 2, 496.

    PubMed  Google Scholar 

  • Montgomery, J. (1989). Lateral line detection of planktonic prey. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and behavior (pp. 561–574). New York: Springer-Verlag.

    Google Scholar 

  • Montgomery, J. C., Coombs, S., Conley, R. A. & Bodznick, D. (1995). Hindbrain sensory processing in lateral line, electrosensory and auditory systems: A comparative overview of anatomical and functional similarities. Auditory Neuroscience, 1, 207–231.

    Google Scholar 

  • Montgomery, J. C., Baker, C. F., & Carton, A. G. (1997). The lateral line can mediate rheotaxis in fish. Nature, 389, 960–963.

    CAS  Google Scholar 

  • Montgomery, J., MacDonald, F., Baker, C. F., & Carton, A. G. (2002). Hydrodynamic contributions to multimodal guidance of prey capture behavior in fish. Brain Behavior and Evolution, 29, 190–198.

    Google Scholar 

  • Montgomery, J. C., McDonald, F., Baker, C. F., Carton, A. G., & Ling, N. (2003). Sensory integration in the hydrodynamic world of rainbow trout. Proceedings of the Royal Society of London B: Biological Sciences, 270, S195–S197.

    Google Scholar 

  • Münz H. (1989). Functional organization of the lateral line periphery. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and evolution (pp. 285–298). New York: Springer-Verlag.

    Google Scholar 

  • Myrberg, A. (2001). The acoustical biology of elasmobranchs. Environmental Biology Fishes, 60, 31–45.

    Google Scholar 

  • Nauroth, I. E., & Mogdans, J. (2009). Goldfish and oscars have comparable responsiveness to dipole stimuli. Naturwissenschaften, 96, 1401–1409.

    CAS  PubMed  Google Scholar 

  • Nelson, M. E., MacIver, M. A., & Coombs, S. (2002). Modeling electrosensory and mechanosensory images during the predatory behavior of weakly electric fish. Brain Behavior and Evolution, 59, 199–210.

    Google Scholar 

  • New, J. G., Fewkes, L. A., & Khan, A. N. (2001). Strike-feeding behavior in the muskellunge Esox masquinongy: Contributions of lateral line and visual sensory systems. Journal of Experimental Biology, 204, 1207–1221.

    CAS  PubMed  Google Scholar 

  • Northcutt, R. G. (1996). The origin of craniates: Neural crest, neurogenic placodes, and homeobox genes. Israeli Journal of Zoology, 42, S273–S313.

    Google Scholar 

  • Northcutt, R. G. (2006). Connections of the lateral and medial divisions of the goldfish telencephalic pallium. Journal of Comparative Neurology, 494, 903–943.

    PubMed  Google Scholar 

  • Northcutt, R. G., & Gans, C. (1983). The genesis of neural crest and epidermal placodes: A reinterpretation of vertebrate origins. Quarterly Review of Biology, 58, 1–28.

    CAS  PubMed  Google Scholar 

  • Palmer, L. M., Deffenbaugh, M., & Mensinger, A. F. (2005). Sensitivity of the anterior lateral line to natural stimuli in the oyster toadfish, Opsanus tau (Linnaeus). Journal of Experimental Biology, 208, 3441–3450.

    PubMed  Google Scholar 

  • Partan, S. R., & Marler, P. (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166, 231–245.

    PubMed  Google Scholar 

  • Partridge, B. L., & Pitcher, T. J. (1980). The sensory basis of fish schools: Relative roles of lateral line and vision. Journal of Comparative Physiology A, 135, 315–325.

    Google Scholar 

  • Pitcher, T. J., Partridge, B. L., & Wardle, C. S/ (1976). A blind fish can school. Science, 194, 963–965.

    Google Scholar 

  • Plachta, D. T. T., Hanke, W., & Bleckmann, H. (2003). A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus. Journal of Experimental Biology, 206, 3479–3486.

    PubMed  Google Scholar 

  • Platt, C., Popper, A. N., & Fay, R. R. (1989). The ear as part of the octavolateralis system. In S. Coombs, P. Görner, & H. Münz (Eds.), The mechanosensory lateral line: Neurobiology and behavior (pp. 633–651). New York: Springer-Verlag.

    Google Scholar 

  • Pluta, S. R., & Kawasaki, M. (2008). Multisensory enhancement of electromotor responses to a single moving object. Journal of Experimental Biology, 211, 2919–2930.

    PubMed  Google Scholar 

  • Pohlmann K., Grasso, F. W., & Breithaupt, T. (2001). Tracking wakes: The nocturnal predatory strategy of piscivorous catfish. Proceedings of the National Academy of Sciences of the USA, 98, 7371–7374.

    CAS  PubMed  Google Scholar 

  • Pohlmann, K., Atema, J., & Breithaupt, T. (2004). The importance of the lateral line in nocturnal predation of piscivorous catfish. Journal of Experimental Biology, 207, 2971–2978.

    PubMed  Google Scholar 

  • Popper, A. N. (1977). A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes. Journal of Morphology, 153, 397–417.

    Google Scholar 

  • Popper, A. N., & Fay, R. R.(2011). Rethinking sound detection by fishes. Hearing Research, 273, 25–36.

    PubMed  Google Scholar 

  • Popper, A. N., Fay, R. R., Platt, C., & Sand, O. (2003). Sound detection mechanisms and capabilities of teleost fishes. In S. P. Collin & J. N. Marshall (Eds.), Sensory processing in aquatic environments (pp. 3–38). New York: Springer.

    Google Scholar 

  • Popper, A. N., Plachta, D. T., Mann, D. A., & Higgs, D. (2004). Response of clupeid fish to ultrasound: A review. Ices Journal of Marine Science, 61, 1057–1061.

    Google Scholar 

  • Prechtl, J. C., von Der Emde, G., Wolfart, J., Karamürsel, S., Akoev, G. N., & Andrianov, Y. N. (1998). Sensory processing in the pallium of a mormyrid fish. Journal of Neuroscience, 18, 7381–7393.

    CAS  PubMed  Google Scholar 

  • Reep, R. L., Gaspard, J. C., Sarko, D., Rice, F. L., Mann, D. A., & Bauer, G. B. (2011). Manatee vibrissae: Evidence for a “lateral line” function. Annals of the New York Academy of Sciences, 1225, 101–109.

    PubMed  Google Scholar 

  • Richardson, E. G. (1954). The relations between acoustics and hydrodynamics. Journal of the Acoustical Society of America, 26, 615–617.

    Google Scholar 

  • Rogers, P. H., & Cox, M. (1988). Underwater sound as a biological stimulus. In J. Atema, R. R. Fay, A. N. Popper, & W. N. Tavolga (Eds.), Sensory biology of aquatic animals (pp. 131–149). New York: Springer-Verlag.

    Google Scholar 

  • Sand, O. (1981). The lateral-line and sound reception. In W. N. Tavolga, A. N. Popper, & R. R. Fay (Eds.), Hearing and sound communication in fishes (pp. 459–480). New York: Springer-Verlag.

    Google Scholar 

  • Sand, O. (1984). Lateral line systems. In L. Bolis, R. D. Keynes, & S. H. P. Maddrell (Eds.), Comparative physiology of sensory systems (pp. 3–32). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Sand, O., & Enger, P. S. (1973). Evidence for an auditory function of the swim bladder in the cod. Journal of Experimental Biology, 59, 405–414.

    CAS  PubMed  Google Scholar 

  • Sand, O., & Hawkins, A. D. (1973). Acoustic properties of the cod swim bladder. Journal of Experimental Biology, 58, 797–820.

    Google Scholar 

  • Sand, O., & Karlsen, H. E. (1986). Detection of infrasound by the Atlantic cod. Journal of Experimental Biology, 125, 197–204.

    CAS  PubMed  Google Scholar 

  • Sand, O., & Karlsen, H. E. (2000). Detection of infrasound and linear acceleration in fishes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 355, 1295–1298.

    CAS  PubMed  Google Scholar 

  • Sand, O., & Bleckmann, H. (2008). Orientation to auditory and lateral line stimuli. In J. F. Webb, A. N. Popper, & R. R. Fay (Eds.), Fish bioacoustics (pp. 183–231). New York: Springer.

    Google Scholar 

  • Saskia, W., & Schuster, S. (2007). The predictive start of a hunting archer fish: A flexible and precise motor pattern performed with the kinematics of an escape C-start. Journal of Experimental Biology, 210, 311–324.

    Google Scholar 

  • Satou, M., Takeuchi, H. A., Nishii, J., Tanabe, M., Kitamura, S., & Okumoto, N. (1994a). Behavioral and electrophysiological evidences that the lateral line is involved in the inter-sexual vibrational communication of the himé salmon (landlocked red salmon, Oncorhynchus nerka). Journal of Comparative Physiology, 174, 539–549.

    Google Scholar 

  • Satou, M., Takeuchi, H. A., Takei, K., Hasegawa, T., Matsushima, T., & Okumoto, N. (1994b). Characterization of vibrational and visual signals which elicit spawning behavior in the male himé salmon (landlocked red salmon, Oncorhynchus nerka). Journal of Comparative Physiology, 174, 527–537.

    Google Scholar 

  • Schroeder, C., & Foxe, J. (2005). Multisensory contributions to low-level, ‘unisensory’ processing. Current Opinion in Neurobiology, 15, 454–458.

    CAS  PubMed  Google Scholar 

  • Schuijf, A., & Buwalda, R. J. A. (1980). Sound localization: A major problem in fish acoustics. In A. N. Popper & R. R. Fay (Eds.), Comparative studies of hearing in vertebrates (pp. 43–78). New York: Springer-Verlag.

    Google Scholar 

  • Schuster, S. (2006). Integration of the electrosense with other senses: Implications for communication. In F. Ladich, S. P. Collin, P. Moller, & B. G. Kapoor (Eds.), Communication in fishes (pp. 781–804). Enfield, NH: Science Publishers.

    Google Scholar 

  • Schwalbe, M. A. B., Bassett, D. K., & Webb, J. F. (2012). Feeding in the dark: Lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti. Journal of Experimental Biology, 215, 2060–2071.

    PubMed  Google Scholar 

  • Skals, N., Anderson, P., Kanneworff, M., Lofstedt, C., & Surlykke, A. (2005). Her odours make him deaf: Crossmodal modulation of olfaction and hearing in a male moth. Journal of Experimental Biology, 208, 595–601.

    PubMed  Google Scholar 

  • Song, J., Yan, H. Y., & Popper, A. N. (1995). Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hearing Research, 91, 63–71.

    CAS  PubMed  Google Scholar 

  • Sonny, D., Knudsen, F. R., Enger, P. S., Kvernstuen, T., & Sand, O. (2006). Reactions of cyprinids to infrasound in a lake and at the cooling water inlet of a nuclear power plant. Journal of Fish Biology, 69, 735–748.

    Google Scholar 

  • Stoffregen, T. A., & Bardy, B. G. (2001). On specification and the senses. Behavioral Brain Sciences, 24, 195–261.

    CAS  PubMed  Google Scholar 

  • Szabo, T. M., McCormick, C. A., & Faber, D. S. (2007). Otolith endorgan input to the Mauthner neuron in the goldfish. Journal of Comparative Neurology, 505, 511–525.

    PubMed  Google Scholar 

  • Todd, N. P. M., Rosengren, S. M., & Colebatch, J. G. (2008). Tuning and sensitivity of the human vestibular system to low-frequency vibration. Neuroscience Letters, 444, 36–41.

    CAS  PubMed  Google Scholar 

  • Tomchik, S. M., & Lu, Z. M. (2005). Octavolateral projections and organization in the medulla of a teleost fish, the sleeper goby (Dormitator latifrons). Journal of Comparative Neurology, 481, 96–117.

    PubMed  Google Scholar 

  • Tricas, T. C., Kajiura, S. M., & Kosaki, R. K. (2006). Acoustic communication in territorial butterflyfish: Test of the sound production hypothesis. Journal of Experimental Biology, 209, 4994–5004.

    Google Scholar 

  • van Bergeijk, W. A. (1964). Directional and non-directional hearing in fish. In W. N. Tavolga (Ed.), Marine bio-acoustics (pp. 185–204). Oxford: Pergamon Press.

    Google Scholar 

  • van Trump, W. J., Coombs, S., Duncan, K., & McHenry, M. J. (2010). Gentamicin is ototoxic to all hair cells in the fish lateral line system. Hearing Research, 261, 42–50.

    PubMed  Google Scholar 

  • von Campenhausen, C., Riess, I., & Weissert, R. (1981). Detection of stationary objects by the blind cavefish Anoptichthys jordani (Characidae). Journal of Comparative Physiology A, 143, 369–374.

    Google Scholar 

  • von der Emde, G., & Prechtl, J. C. (1999). Anatomical connection of auditory and lateral line areas of the dorsal telencephalon (Dm) in the osteoglossomorph teleost, Gnathonemus petersii. Brain Research, 818, 355–367.

    PubMed  Google Scholar 

  • Webb, J. F. (1998). The laterophysic connection: A unique link between the swim bladder and the lateral-line system in Chaetodon (Perciformes: Chaetodontidae). Copeia, 1998, 1032–1036.

    Google Scholar 

  • Webb, J. F., & Smith, W. L. (2000). The laterophysic connection in chaetodontid butterflyfish: Morphological variation and speculations on sensory function. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 355, 1125–1129.

    CAS  PubMed  Google Scholar 

  • Webb, J. F., Herman, J. L., Woods, C. F., & Ketten, D. R. (2010). The ears of butterflyfishes (Chaetodontidae): ‘Hearing generalists’ on noisy coral reefs? Journal of Fish Biology, 77, 1406–1423.

    CAS  PubMed  Google Scholar 

  • Weeg, M. S. & Bass, A. H. (2000). Central lateral line pathways in a vocalizing fish. The Journal of Comparative Neurology, 418, 41–64.

    CAS  PubMed  Google Scholar 

  • Will, U. (1986). Organization and projections of the area octavolateralis in amphibians. In B. Fritzsch, M. Ryan, W. Wilczynski, T. Hetherington, & W. Walkowiak (Eds.), The evolution of the amphibian auditory system (pp. 185–208). New York: John Wiley & Sons.

    Google Scholar 

  • Wilson, M., Montie, E. W., Mann, K. A., & Mann, D. A. (2009). Ultrasound detection in the Gulf menhaden requires gas-filled bullae and an intact lateral line. Journal of Experimental Biology, 212, 3422–3427.

    PubMed  Google Scholar 

  • Windsor, S. P., Tan, D., & Montgomery, J. C. (2008). Swimming kinematics and hydrodynamic imaging in the blind Mexican cavefish (Astyanax fasciatus). Journal of Experimental Biology, 211, 2950–2959.

    PubMed  Google Scholar 

  • Windsor, S. P., Norris, S. E., Cameron, S. M., Mallinson, G. D., & Montgomery, J. C. (2010). The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: Open water and heading towards a wall. Journal of Experimental Biology, 213, 3819–3831.

    PubMed  Google Scholar 

  • Yamamoto, N., & Ito, H. (2005). Fiber connections of the anterior preglomerular nucleus in cyprinids with notes on telencephalic connections of the preglomerular complex. Journal of Comparative Neurology, 491, 212–233.

    PubMed  Google Scholar 

  • Yamamoto, N., & Ito, H. (2008). Visual, lateral line, and auditory ascending pathways to the dorsal telencephalic area through the rostrolateral region of the lateral preglomerular nucleus in cyprinids. Journal of Comparative Neurology, 508, 615–647.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Braun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Braun, C.B., Sand, O. (2013). Functional Overlap and Nonoverlap Between Lateral Line and Auditory Systems. In: Coombs, S., Bleckmann, H., Fay, R., Popper, A. (eds) The Lateral Line System. Springer Handbook of Auditory Research, vol 48. Springer, New York, NY. https://doi.org/10.1007/2506_2013_19

Download citation

Publish with us

Policies and ethics