Skip to main content
Log in

The directionality of the ear of the pigeon (Columba livia)

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The directionality of cochlear microphonic potentials in the azimuthal plane was investigated in the pigeon (Columba livia), using acoustic free-field stimulation (pure tones of 0.25–6 kHz).

At high frequencies in the pigeon's hearing range (4–6 kHz), changing azimuth resulted in a maximum change of the cochlear microphonic amplitude by about 20 dB (SPL). The directionality decreased clearly with decreasing frequency.

Acoustic blocking of the contralateral ear canal could reduce the directional sensitivity of the ipsilateral ear by maximally 8 dB. This indicates a significant sound transmission through the bird's interaural pathways. However, the magnitude of these effects compared to those obtained by sound diffraction (maximum > 15 dB) suggests that pressure gradients at the tympanic membrane are only of subordinate importance for the generation of directional cues.

The comparison of interaural intensity differences with previous behavioral results confirms the hypothesis that interaural intensity difference is the primary directional cue of azimuthal sound localization in the high-frequency range (2–6 kHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CM :

cochlear microphonic potential

IID :

interaural intensity difference

IID-MRA :

minimum resolvable angle calculated from interaural intensity difference

MRA :

minimum resolvable angle

OTD :

interaural ongoing time difference

RMS :

root mean square

SPL :

sound pressure level

References

  • Autrum H (1940) Über Lautäußerungen und Schallwahrnehmung bei Arthropoden. II. Das Richtungshören von Locusta und Versuch einer Hörtheorie für Tympanalorgane vom Locustidentyp. Z Vergl Physiol 28:326–352

    Google Scholar 

  • Beranek LL (1954) Acoustics. McGraw-Hill, New York Toronto London

    Google Scholar 

  • Calford MB (1988) Constraints on the coding of sound frequency imposed by the avian interaural canal. J Comp Physiol A 162:491–502

    Google Scholar 

  • Calford MB, Piddington RW (1988) Avian interaural canal enhances interaural delay. J Comp Physiol A 162:503–510

    Google Scholar 

  • Coles RB, Aitkin LM (1979) The response properties of auditory neurones in the midbrain of the domestic fowl (Gallus gallus) to monaural and binaural stimuli. J Comp Physiol 134:241–251

    Google Scholar 

  • Coles RB, Guppy A (1988) Directional hearing in the barn owl (Tyto alba). J Comp Physiol A 163:117–133

    Google Scholar 

  • Coles RB, Lewis DB, Hill KG, Hutchings ME, Gower DM (1980) Directional hearing in the Japanese quail (Coturnix coturnix japonica). II. Cochlear physiology. J Exp Biol 86:153–170

    Google Scholar 

  • Delius JD, Emmerton J (1978) Sensory mechanisms related to homing in pigeons. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation, and homing. Springer, Berlin Heidelberg New York, pp 35–41

    Google Scholar 

  • Goerdel-Leich A, Schwartzkopff J (1984) The auditory threshold of the pigeon (Columba livia) by heart-rate conditioning. Naturwissenschaften 71:98–99

    Google Scholar 

  • Gourevitch G (1980) Directional hearing in terrestrial mammals. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Springer, Berlin Heidelberg New York, pp 357–373

    Google Scholar 

  • Hafter ER (1984) Spatial hearing and the duplex theory: How variable is the model? In: Edelmann GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 425–448

    Google Scholar 

  • Hill KG, Lewis DB, Hutchings ME, Coles RB (1980) Directional hearing in the Japanese quail (Coturnix coturnix japonica). I. Acoustic properties of the auditory system. J Exp Biol 86:135–151

    Google Scholar 

  • Jenkins WM, Masterton RB (1979) Sound localization in pigeon (Columba livia). J Comp Physiol Psychol 93:403–413

    Google Scholar 

  • Klinke R, Schermuly L (1986) Inner ear mechanics of the reptilian and avian basilar papillae in comparison to neural data. Hearing Res 22:183–184

    Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto alba). J Comp Physiol 133:13–21

    Google Scholar 

  • Knudsen EI, Konishi M (1980) Monaural occlusion shifts receptive-field locations of auditory midbrain units in the owl. J Neurophysiol 44:687–695

    Google Scholar 

  • Kreithen ML, Keeton WT (1974) Detection of changes in atmospheric pressure by the homing pigeon, Columba livia. J Comp Physiol 89:73–82

    Google Scholar 

  • Kreithen ML, Quine DB (1979) Infrasound detection by the homing pigeon: A behavioral audiogram. J Comp Physiol 129:1–4

    Google Scholar 

  • Lewald J (1987a) The acuity of sound localization in the pigeon (Columba livia). Naturwissenschaften 74:296–297

    Google Scholar 

  • Lewald J (1987b) Interaural time and intensity difference thresholds of the pigeon (Columba livia). Naturwissenschaften 74:449–451

    Google Scholar 

  • Lewald J (1988) Neuronal coding of azimuthal sound direction in the auditory midbrain of the pigeon. Naturwissenschaften 75:470–472

    Google Scholar 

  • Lewald J (1989) Verhaltensphysiologische und neurophysiologische Untersuchungen zum Richtungshören der Taube (Columba livia). Verlag für Wissenschaft und Kunst, Herne

    Google Scholar 

  • Lewald J (in press) Neural mechanisms of directional hearing in the pigeon. Exp Brain Res

  • Lewis B, Coles R (1980) Sound localization in birds. Trends Neurosci 3:102–105

    Google Scholar 

  • Moiseff A (1989a) Binaural disparity cues available to the barn owl for sound localization. J Comp Physiol A 164:629–636

    Google Scholar 

  • Moiseff A (1989b) Bi-coordinate sound localization by the barn owl. J Comp Physiol A 164:637–644

    Google Scholar 

  • Moiseff A, Konishi M (1981a) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1:40–48

    Google Scholar 

  • Moiseff A, Konishi M (1981b) The owl's interaural pathway is not involved in sound localization. J Comp Physiol 144:299–304

    Google Scholar 

  • Møller AR (1974) Function of the middle ear. In: Keidel WD, Neff WD (eds) Auditory system (Handbook of sensory physiology, vol V/1). Springer, Berlin Heidelberg New York, pp 491–517

    Google Scholar 

  • Quine DB, Kreithen ML (1981) Frequency shift discrimination: Can homing pigeons locate infrasounds by Doppler shifts? J Comp Physiol 141:153–155

    Google Scholar 

  • Rayleigh Lord Strutt JW (1907) On our perception of sound direction. Philos Mag 13:214–232

    Google Scholar 

  • Rosowski JJ (1979) The interaural pathway of the pigeon and sound localization: Does the pigeon ear act as a differential pressure transducer? Doctoral Dissertation, University of Pennsylvania, Philadelphia

    Google Scholar 

  • Rosowski JJ, Saunders JC (1979) The interaural pathway and auditory localization: Cochlear microphonic measures in free field sound. J Acoust Soc Am 65:S10

    Google Scholar 

  • Rosowski JJ, Saunders JC (1980) Sound transmission through the avian interaural pathways. J Comp Physiol 136:183–190

    Google Scholar 

  • Schermuly L, Klinke R (1987) Infrasound receptors in the pigeon inner ear. Pflügers Arch 408:R76

    Google Scholar 

  • Schwartzkopff J (1950) Beitrag zum Problem des Richtungshörens bei Vögeln. Z Vergl Physiol 32:319–327

    Google Scholar 

  • Schwartzkopff J (1952a) Untersuchungen über die Arbeitsweise des Mittelohres und das Richtungshören der Singvögel unter Verwendung von Cochlea-Potentialen. Z Vergl Physiol 34:46–68

    Google Scholar 

  • Schwartzkopff J (1952b) Über den Gehörsinn der Vögel. J Ornithol 93:91–103

    Google Scholar 

  • Schwartzkopff J (1955) On the hearing of birds. Auk 72:340–347

    Google Scholar 

  • Schwartzkopff J, Brémond JC (1963) Méthode de dérivation des potentiels cochléaires chez l'oiseau. J Physiol (Paris) 55:495–518

    Google Scholar 

  • Schwarz L (1943) Zur Theorie der Beugung einer ebenen Schallwelle an der Kugel. Akust Z 8:91–117

    Google Scholar 

  • Stevens SS, Newman EB (1936) The localization of actual sources of sound. Am J Psychol 48:297–306

    Google Scholar 

  • Theurich M, Langner G, Scheich H (1984) Infrasound responses in the midbrain of the guinea fowl. Neurosci Lett 49:81–86

    Google Scholar 

  • Wada Y (1924) Beiträge zur vergleichenden Physiologie des Gehörorganes. Pflügers Arch 202:46–69

    Google Scholar 

  • Warchol ME, Dallos P (1989) Neural response to very low-frequency sound in the avian cochlear nucleus. J Comp Physiol A 166:83–95

    Google Scholar 

  • Wever EG, Bray CW (1936) Hearing in the pigeon as studied by the electrical responses of the inner ear. J Comp Psychol 22:353–363

    Google Scholar 

  • Yodlowski ML, Kreithen ML, Keeton WT (1977) Detection of atmospheric infrasound by homing pigeons. Nature 265:725–726

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewald, J. The directionality of the ear of the pigeon (Columba livia). J Comp Physiol A 167, 533–543 (1990). https://doi.org/10.1007/BF00190824

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00190824

Key words

Navigation