Skip to main content
Log in

A note on the crack behavior in brittle materials under the double cantilever beam cleavage at constant strain rate

  • Published:
International Journal of Fracture Mechanics Aims and scope Submit manuscript

Abstract

The double cantilever beam (DCB) cleavage technique developed by many investigators(1–5) has been applied for measuring the surface energy 0,4–8) and the crack velocity(3,9) in brittle materials. The authors investigated the crack behavior in the DCB cleavage specimen at constant strain rate.

Résumé

Pour mesurer l'énergie de surface et la vitesse de fissuration dans les matériaux fragiles, on a appliqué la technique, utilisée par plusieurs chercheurs, de la mise en clivage d'une éprouvette en forme de double poutre cantilever. Les auteurs ont analysé le comportement de fissures dans ce type d'éprouvettes à vitesse de déformation constante.

Zusammenfassung

Das Doppelkantileverproben-Spaltverfahren (DCB), welches von verschiedenen Verfassern (1–5) entwickelt worden ist, wurde für die Messung der Oberflächenenergie [1, 4–8] und der Rißausbreitungsgeschwindigkeit [3,9] in spröden Materialien angewandt. Die Verfasser untersuchten das Rissverhalten in DCB-Proben bei konstanter Verformungsgeschwindigkeit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Gilman, Direct Measurements of the Surface Energies of Crystals, Jour. Appl. Phys., 31 (12), 2208, (1960).

    Google Scholar 

  2. J. J. Gilman, Cleavage, Ductility, and Tenacity in Crystals, pp 193 in Fracture, Edited by B. L. Averback and others. Technology Press of M.I.T., Cambridge, Mass. and John Wiley & Sons Inc., New York, 1959.

  3. P. P. Gillis and J. J. Gilman, Double-Cantilever Cleavage Mode of Crack Propagation, Jour. Appl. Phys., 35, (3), 647, (1964).

    Google Scholar 

  4. P. P. Gillis, Surface-Energy Determination by Cleavage, Jour. Appl. Phys., 36 (4), 1374, (1965).

    Google Scholar 

  5. J. P. Berry, Determination of Fracture Surface Energy by the Cleavage Technique, Jour. Appl. Phys., 34, (1), 62, (1963).

    Google Scholar 

  6. A. R. C. Westwood and T. T. Hitch, Surface Energy of (100 Potassium Chloride), Jour. Appl. Phys., 34, (10), 3085, (1963).

    Google Scholar 

  7. P. L. Gutshall and G. E. Gross, Cleavage Surface Energy, of NaCl and MgO in Vacuum, Jour. Appl. Phys., 36, (8), 2459, (1965).

    Google Scholar 

  8. S. M. Wiederhorn, Fracture Surface Energy of Glass, Jour. Appl. Phys., 52, (2), 99, (1969).

    Google Scholar 

  9. S. M. Wiederhorn, Influence of Water Vapor on Crack Propagation in Soda-Lime Glass, Jour. Am. Ceram. Soc., 50, (8), 407, (1968).

    Google Scholar 

  10. A. A. Griffith, Phenomena of Rupture and Flow in Solids, Phil. Trans. Roy. Soc. (London), A221, 163, (1921).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, M., Oda, I. & Yamamoto, N. A note on the crack behavior in brittle materials under the double cantilever beam cleavage at constant strain rate. Int J Fract 7, 447–450 (1971). https://doi.org/10.1007/BF00189114

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189114

Keywords

Navigation