Skip to main content
Log in

Electric organ corollary discharge pathways in mormyrid fish

I. The mesencephalic command associated nucleus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Corollary discharge signals associated with the motor command that elicits the electric organ discharge are prominent in the electrosensory lobe of mormyrid fish (Gnathonemus petersii). Central pathways and structures that convey these signals from the motor command nucleus to the electrosensory lobe are known anatomically, but these structures and their contributions to the various corollary discharge phenomena have not been examined physiologically. This study examines one such structure, the mesencephalic command associated nucleus (MCA).

Recordings from MCA cells show a highly stereotyped two spike response. The first spike of the response has a latency of about 2.5 ms following the initiation of the electric organ discharge (EOD) motor command which is about 5.5 ms before the occurrence of the EOD.

Results from stimulation and lesion experiments indicate that MCA is responsible for: 1) the gate-like corollary discharge-driven inhibition of the knollenorgan pathway; 2) the gate-like corollary discharge-driven excitation of granule cells in the mormyromast regions of the electrosensory lobe; and 3) various excitatory effects on other cells in the mormyromast regions.

Some corollary discharge phenomena are still present after MCA lesions, including the earliest corollary discharge effects and the plasticity that follows pairing with electrosensory stimuli. These phenomena must be mediated by structures other than MCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCA :

bulbar command associated nucleus

C EOD :

motor command

C3 :

central cerebellar lobule 3

COM EOD:

motor command nucleus

DLZ :

dorsolateral zone of ELL cortex

EGa :

eminentia granularis anterior

EGp :

eminentia granularis posterior

ELa :

nucleus exterolateralis anterior

ELL :

electrosensory lobe

ELLml :

molecular layer of ELL cortex

EOD :

electric organ discharge

gang :

ganglion layer

gran :

granule layer

jlem :

juxtalemniscal region

JLl :

lateral juxtalobar nucleus

JLm :

medial juxtalobar nucleus

lat :

nucleus lateralis

ll :

lateral lemniscus

MCA :

mesencephalic command associated nucleus

mol :

molecular layer

MOml :

molecular layer of the medial octavolateral nucleus

MRN :

medullary relay nucleus

MZ :

medial zone of ELL cortex

nALL :

anterior lateral line nerve

NELL :

nucleus of the electrosensory lobe

nX :

cranial nerve X (vagus)

OT :

optic tectum

PCA :

paratrigeminal command associated nucleus

pee :

praeeminentialis electrosensory tract

plex :

plexiform layer

prae :

nucleus praeeminentialis

sublem :

sublemniscal nucleus

TEL :

telencephalon

VLZ :

ventrolateral zone of ELL cortex

vped :

valvular peduncle

References

  • Aljure E (1964) Neuronal control system of electric organ discharges in Mormyridae. PhD Thesis, Columbia University, New York

    Google Scholar 

  • Bell CC (1982) Properties of a modifiable efference copy in electric fish. J Neurophysiol 47: 1043–1056

    CAS  PubMed  Google Scholar 

  • Bell CC (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 146: 229–253

    Google Scholar 

  • Bell CC (1990) Mormyromast electroreceptor organs and their afferents in mormyrid electric fish. II. Intra-axonal recordings show initial stages of central processing. J Neurophysiol 63: 303–318

    Google Scholar 

  • Bell CC, von der Emde G (1995) Electric organ corollary discharge pathways in mormyrid fish. II. The medial juxtalobar nucleus. J Comp Physiol A 177: 463–479

    Google Scholar 

  • Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish. J Neurosci 9: 1029–1044

    CAS  PubMed  Google Scholar 

  • Bell CC, Grant K (1992) Corollary discharge effects and sensory processing in the mormyromast regions of the mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity. J Neurophysiol 68: 859–875

    CAS  PubMed  Google Scholar 

  • Bell CC, Szabo T (1986) Electroreception in mormyrid fish: central anatomy. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 375–421

    Google Scholar 

  • Bell CC, Finger TE, Russell CJ (1981) Central connections of the posterior lateral line lobe in mormyrid fish. Exp Brain Res 42: 9–22

    Google Scholar 

  • Bell CC, Libouban S, Szabo T (1983) Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J Comp Neurol 216: 327–338

    Google Scholar 

  • Bell CC, Caputi A, Grant K, Serrier J (1993) Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish. Proc Natl Acad Sci USA 90: 4650–4654

    Google Scholar 

  • Bennett MVL, Pappas GD, Aljure E, Nakajima Y (1967) Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J Neurophysiol 30: 180–208

    Google Scholar 

  • Clausse S (1986) Comparison du centre initiateur de la commande motrice de la décharge électrique chez deux espèces de poissons, par une étude morpho-functionelle. Thèse de Doctorat de l'Université de Paris 6

  • Grant K, Bell CC, Clausse S, Ravaille M (1986) Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyrid fish. J Comp Neurol 245: 514–530

    Google Scholar 

  • Holst von E, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37: 464–476

    Google Scholar 

  • Hopkins CD (1986) Behavior of mormyridae. In: Bullock TH, Heiligenberg W (eds) Electroreception. John Wiley & Sons, New York, pp 527–571

    Google Scholar 

  • Maler L (1973) The posterior lateral line lobe of a mormyrid fish—a Golgi study. J Comp Neurol 152: 281–299

    Google Scholar 

  • Meek J (1992) Structural organization of the mormyrid electrosensory lateral line lobe. J Comp Physiol A 173: 675–677

    Google Scholar 

  • Mugnaini E, Maler L (1987) Cytology and immunohistochemistry of the nucleus of the lateral line lobe in the electric fish Gnathonemus petersii (Mormyridae) brain. Evidence suggesting that GABAergic synapses mediate an inhibitory corollary discharge. Synapse 1: 32–56

    Google Scholar 

  • Zipser B, Bennett MVL (1976) Interaction of electrosensory and electromotor signals in the lateral line lobe of a mormyrid fish. J Neurophysiol 39: 713–721

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, C., Dunn, K., Hall, C. et al. Electric organ corollary discharge pathways in mormyrid fish. J Comp Physiol A 177, 449–462 (1995). https://doi.org/10.1007/BF00187481

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187481

Key words

Navigation