Skip to main content

Influences of Motor Systems on Electrosensory Processing

  • Chapter
  • First Online:
Electroreception: Fundamental Insights from Comparative Approaches

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 70))

Abstract

The first central stage of electrosensory processing in fish has proven to be a particularly useful model system for examining the general issue of how motor systems and behavior influence sensory processing. This chapter reviews this literature, focusing on a substantial body of work elucidating the synaptic, cellular, and circuit mechanisms for predicting and canceling self-generated sensory inputs. Some additional functions of motor corollary discharge signals in weakly electric mormyrid fish are also discussed along with the implications of studies on electrosensory systems for other sensory modalities and brain structures, including the auditory system and the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amey-Ozel M, von der Emde G, Engelmann J, Grant K (2015) More a finger than a nose: the trigeminal motor and sensory innervation of the Schnauzenorgan in the elephant-nose fish Gnathonemus petersii. J Comp Neurol 523(5):769–789

    Article  PubMed  Google Scholar 

  • Bastian J (1995) Pyramidal cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs. J Comp Physiol A 176:63–78

    Article  CAS  PubMed  Google Scholar 

  • Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16(6):645–649

    Article  CAS  PubMed  Google Scholar 

  • Bastian J, Bratton B (1990) Descending control of electroreception. I Properties of nucleus praeeminentialis neurons projecting indirectly to the electrosensory lateral line lobe. J Neurosci 10:1226–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastian J, Chacron MJ, Maler L (2004) Plastic and nonplastic pyramidal cells perform unique roles in a network capable of adaptive redundancy reduction. Neuron 41(5):767–779

    Article  CAS  PubMed  Google Scholar 

  • Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C, Ivry RB, Leggio M, Mattingley JB, Molinari M, Moulton EA, Paulin MG, Pavlova MA, Schmahmann JD, Sokolov AA (2015) Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14(2):197–220

    Article  PubMed  Google Scholar 

  • Bell C, Bodznick D, Montgomery J, Bastian J (1997a) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50:17–31

    Article  PubMed  Google Scholar 

  • Bell C, von der Emde G (1995) Electric organ corollary discharge pathways in mormyrid fish. II The medial juxtalabar nucleus. J Comp Physiol A 177:463–479

    Article  Google Scholar 

  • Bell CC (1982) Properties of a modifiable efference copy in electric fish. J Neurophysiol 47:1043–1056

    Article  CAS  PubMed  Google Scholar 

  • Bell CC (1986) Duration of plastic change in a modifiable efference copy. Brain Res 369:29–36

    Article  CAS  PubMed  Google Scholar 

  • Bell CC (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 146:229–253

    CAS  PubMed  Google Scholar 

  • Bell CC (1990) Mormyromast electroreceptor organs and their afferents in mormyrid electric fish: II. Intra-axonal recordings show initial stages of central processing. J Neurophysiol 63:303–318

    Article  CAS  PubMed  Google Scholar 

  • Bell CC (2001) Memory-based expectations in electrosensory systems. Curr Opin Neurobiol 11:481–487

    Article  CAS  PubMed  Google Scholar 

  • Bell CC (2002) Evolution of cerebellum-like structures. Brain Behav Evol 59:312–326

    Article  PubMed  Google Scholar 

  • Bell CC, Caputi A, Grant K, Serrier J (1993) Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish. Proc Nat Acad Sci 90:4650–4654

    Article  CAS  PubMed  Google Scholar 

  • Bell CC, Finger TE, Russell CJ (1981) Central connections of the posterior lateral line lobe in mormyrid fish. Exp Brain Res 42:9–22

    Article  CAS  PubMed  Google Scholar 

  • Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish. J Neurosci 9:1029–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell CC, Han V, Sawtell NB (2008) Cerebellum-like structures and their implications for cerebellar function. Annu Rev Neurosci 31:1–24

    Article  CAS  PubMed  Google Scholar 

  • Bell CC, Han VZ, Sugawara S, Grant K (1997b) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278–281

    Article  CAS  PubMed  Google Scholar 

  • Bell CC, Libouban S, Szabo T (1983) Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J Comp Neurol 216:327–338

    Article  CAS  PubMed  Google Scholar 

  • Bell CC, Maler L (2005) Central neuroanatomy of electrosensory systems in fish. In: Bullock TH, Hopkins CD, Popper AN, Fay RR (eds) Electroreception. Springer, New York, pp 68–111

    Chapter  Google Scholar 

  • Bell CC, Russell CJ (1978) Effect of electric organ discharge on ampullary receptors in a mormyrid. Brain Res 145:85–96

    Article  CAS  PubMed  Google Scholar 

  • Berrebi AS, Morgan JI, Mugnaini E (1990) The Purkinje cell class may extend beyond the cerebellum. J Neurocytol 19(5):643–654

    Article  CAS  PubMed  Google Scholar 

  • Bodznick D, Montgomery JC, Carey M (1999) Adaptive mechanisms in the elasmobranch hindbrain. J Exp Biol 202:1357–1364

    CAS  PubMed  Google Scholar 

  • Borges-Merjane C, Trussell LO (2015) ON and OFF unipolar brush cells transform multisensory inputs to the auditory system. Neuron 85(5):1029–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks JX, Carriot J, Cullen KE (2015) Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nat Neurosci 18(9):1310–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks JX, Cullen KE (2013) The primate cerebellum selectively encodes unexpected self-motion. Curr Biol 23(11):947–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell HR, Meek J, Zhang J, Bell CC (2007) Anatomy of the posterior caudal lobe of the cerebellum and the eminentia granularis posterior in a mormyrid fish. J Comp Neurol 502(5):714–735

    Article  PubMed  Google Scholar 

  • Cant NB (1992) The cochlear nucleus: neuronal types and their synaptic organization. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: neuroanatomy. Springer, New York, pp 66–116

    Chapter  Google Scholar 

  • Carlson BA (2002) Neuroanatomy of the mormyrid electromotor control system. J Comp Neurol 454:440–455

    Article  PubMed  CAS  Google Scholar 

  • Churchland PS, Ramachandran VS, Sejnowski TJ (1994) A critique of pure vision. In: Koch C, Davis JL (eds) Large-scale neuronal theories of the brain. MIT Press, Cambridge, pp 23–74

    Google Scholar 

  • Crapse TB, Sommer MA (2008) Corollary discharge across the animal kingdom. Nat Rev Neurosci 9(8):587–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean P, Porrill J, Stone JV (2002) Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proc Biol Sci 269(1503):1895–1904

    Article  PubMed  PubMed Central  Google Scholar 

  • Duman CH, Bodznick D (1996) A role for GABAergic inhibition in electrosensory processing and common mode rejection in the dorsal nucleus of the little skate, Raja erinacea. J Comp Physiol A 179:797–807

    Article  CAS  PubMed  Google Scholar 

  • Ebner TJ, Pasalar S (2008) Cerebellum predicts the future motor state. Cerebellum 7(4):583–588

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelmann J, Nobel S, Rover T, Emde G (2009) The Schnauzenorgan-response of Gnathonemus petersii. Front Zool 6:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Enikolopov AG, Abbott LF, Sawtell NB (2018) Internally generated predictions enhance neural and behavioral detection of sensory stimuli in an electric fish. Neuron 99(1):135–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finger TE, Bell CC, Carr C (1986) Comparisons among electroreceptive teleosts: why are the electrosensory systems so similar? In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 465–481

    Google Scholar 

  • Fotowat H, Harrison RR, Krahe R (2013) Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus. J Neurosci 33(34):13758–13772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M (1982) Adaptive filter model of the cerebellum. Biol Cybern 45(3):195–206

    Article  CAS  PubMed  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Grant K, Sugawara S, Gomez L, Han VZ, Bell CC (1998) The Mormyrid electrosensory lobe in vitro: physiology and pharmacology of cells and circuits. J Neurosci 18:6009–6025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grusser OJ (1986) Interaction of efferent and afferent signals in visual perception: a history of ideas and experimental paradigms. Acta Psychol 63:3–21

    Article  CAS  Google Scholar 

  • Hall JC, Bell C, Zelick R (1995) Behavioral evidence of a latency code for stimulus intensity in mormyrid electric fish. J Comp Physiol A 177:29–39

    Article  Google Scholar 

  • Halverson HE, Khilkevich A, Mauk MD (2015) Relating cerebellar purkinje cell activity to the timing and amplitude of conditioned eyelid responses. J Neurosci 35:7813–7832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han VZ, Grant G, Bell CC (2000) Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron 27:611–622

    Article  CAS  PubMed  Google Scholar 

  • Harvey-Girard E, Lewis J, Maler L (2010) Burst-induced anti-Hebbian depression acts through short-term synaptic dynamics to cancel redundant sensory signals. J Neurosci 30:6152–6169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann V, Sanguinetti-Scheck JI, Gomez-Sena L, Engelmann J (2017) Sensory flow as a basis for a novel distance cue in freely behaving electric fish. J Neurosci 37:302–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  • Jirenhed DA, Hesslow G (2011) Learning stimulus intervals--adaptive timing of conditioned purkinje cell responses. Cerebellum 10(3):523–535

    Article  PubMed  Google Scholar 

  • Johansson F, Jirenhed DA, Rasmussen A, Zucca R, Hesslow G (2014) Memory trace and timing mechanism localized to cerebellar Purkinje cells. Proc Natl Acad Sci U S A 111(41):14930–14934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy A, Wayne G, Kaifosh P, Alvina K, Abbott LF, Sawtell NB (2014) A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nat Neurosci 17:416–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litwin-Kumar A, Harris KD, Axel R, Sompolinsky H, Abbott LF (2017) Optimal degrees of synaptic connectivity. Neuron 93:1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado AS, Darmohray DM, Fayad J, Marques HG, Carey MR (2015) A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. elife 4:e07892

    Article  PubMed  PubMed Central  Google Scholar 

  • Markram H, Gerstner W, Sjostrom PJ (2011) A history of spike-timing-dependent plasticity. Front Synaptic Neurosci 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD (2000a) Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci 20:5516–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina JF, Mauk MD (2000) Computer simulation of cerebellar information processing. Nat Neurosci 3:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Medina JF, Nores WL, Ohyama T, Mauk MD (2000b) Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol 10:717–724

    Article  CAS  PubMed  Google Scholar 

  • Meek J, Grant K, Bell C (1999) Structural organization of the mormyrid electrosensory lateral line lobe. J Exp Biol 202:1291–1300

    CAS  PubMed  Google Scholar 

  • Meek J, Grant K, Sugawara S, Hafmans TGM, Veron M, Denizot JP (1996) Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: morphology, immunocytochemistry, and synaptology. J Comp Neurol 375:43–65

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC (1984) Noise cancellation in the electrosensory system of the thornback ray; common mode rejection of input produced by the animal's own ventilatory movement. J Comp Physiol A 155:103–111

    Article  Google Scholar 

  • Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 174:145–148

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, Bodznick D (1999) Signals and noise in the elasmobranch electrosensory system. J Exp Biol 202:1349–1355

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Maler L (1987) Cytology and immunohistochemistry of the nucleus exterlateralis anterior of the mormyrid brain: possible role of GABAergic synapses in temporal analysis. Anat Embryol 176:313–336

    Article  CAS  PubMed  Google Scholar 

  • Mugnaini E, Sekerkova G, Martina M (2011) The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain Res Rev 66:220–245

    Article  CAS  PubMed  Google Scholar 

  • Nelson ME, Paulin MG (1995) Neural simulations of adaptive reafference suppression in the elasmobranch electrosensory system. J Comp Physiol A 177:723–736

    Article  CAS  PubMed  Google Scholar 

  • Nixon DP, Passingham RE (2001) Predicting sensory events: the role of the cerebellum in motor learning. Exp Brain Res 138:251–257

    Article  CAS  PubMed  Google Scholar 

  • Oertel D, Young ED (2004) What's a cerebellar circuit doing in the auditory system? Trends Neurosci 27:104–110

    Article  CAS  PubMed  Google Scholar 

  • Ohyama T, Nores WL, Murphy M, Mauk MD (2003) What the cerebellum computes. Trends Neurosci 26:222–227

    Article  CAS  PubMed  Google Scholar 

  • Pasalar S, Roitman AV, Durfee WK, Ebner TJ (2006) Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci 9:1404–1411

    Article  CAS  PubMed  Google Scholar 

  • Pereira AC, Centurion V, Caputi AA (2005) Contextual effects of small environments on the electric images of objects and their brain evoked responses in weakly electric fish. J Exp Biol 208:961–972

    Article  PubMed  Google Scholar 

  • Post N, von der Emde G (1999) The ‘novelty response’ in an electric fish: response properties and habituation. Physiol Behav 68:115–128

    Article  CAS  PubMed  Google Scholar 

  • Prechtl JC, von der Emde G, Wolfart J, Karamursel S, Akoev GN, Andrianov YN, Bullock TH (1998) Sensory processing in the pallium of a mormyrid fish. J Neurosci 18:7381–7393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Requarth T, Sawtell NB (2014) Plastic corollary discharge predicts sensory consequences of movements in a cerebellum-like circuit. Neuron 82(4):896–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts PD (1999) Computational consequences of temporally asymmetric learning rules: I. Differential hebbian learning. J Comp Neurosci 7:235–246

    Article  CAS  Google Scholar 

  • Roberts PD, Bell CC (2000) Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. J Comput Neurosci 9(1):67–83

    Article  CAS  PubMed  Google Scholar 

  • Russell CJ, Bell CC (1978) Neuronal responses to electrosensory input in the mormyrid valvula cerebelli. J Neurophysiol 41:1495–1510

    Article  CAS  PubMed  Google Scholar 

  • Sawtell NB (2010) Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron 66(4):573–584

    Article  CAS  PubMed  Google Scholar 

  • Sawtell NB, Williams A (2008) Transformations of electrosensory encoding associated with an adaptive filter. J Neurosci 28(7):1598–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawtell NB, Williams A, Bell CC (2007) Central control of dendritic spikes shapes the responses of Purkinje-like cells through spike timing-dependent synaptic plasticity. J Neurosci 27:1552–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singla S, Dempsey C, Warren R, Enikolopov AG, Sawtell NB (2017) A cerebellum-like circuit in the auditory system cancels responses to self-generated sounds. Nat Neurosci 20:943–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489

    Article  CAS  PubMed  Google Scholar 

  • Sun LD, Goldberg ME (2016) Corollary discharge and oculomotor proprioception: cortical mechanisms for spatially accurate vision. Annu Rev Vis Sci 2:61–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Szabo T, Hagiwara S (1967) A latency-change mechanism involved in sensory coding of electric fish (mormyrids). Physiol Behav 2:331–335

    Article  Google Scholar 

  • Toerring MJ, Moller P (1984) Locomotor and electric displays associated with electrolocation during exploratory behavior in mormyrid fish. Behav Brain Res 12:291–306

    Article  CAS  PubMed  Google Scholar 

  • Tzounopoulos T, Kim Y, Oertel D, Trussell LO (2004) Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nat Neurosci 7:719–725

    Article  CAS  PubMed  Google Scholar 

  • Tzounopoulos T, Rubio ME, Keen JE, Trussell LO (2007) Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron 54:291–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von der Emde G, Bell C (1996) Nucleus preeminentialis of mormyrid fish, a center for recurrent electrosensory feedback. I. Electrosensory and corollary discharge responses. J Neurophysiol 76:1581–1596

    Article  PubMed  Google Scholar 

  • von der Emde G, Sena LG, Niso R, Grant K (2000) The midbrain precommand nucleus of the mormyrid electromotor network. J Neurosci 20:5483–5495

    Article  PubMed  PubMed Central  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) The reafference principle. Naturwissenschaften 37:464–476

    Article  Google Scholar 

  • Zhang J, Han VZ, Meek J, Bell CC (2007) Granular cells of the mormyrid electrosensory lobe and postsynaptic control over presynaptic spike occurrence and amplitude through an electrical synapse. J Neurophysiol 9(3):2191–2203

    Article  Google Scholar 

  • Zhang Z, Bodznick D (2008) Plasticity in a cerebellar-like structure: suppressing reafference during episodic behaviors. J Exp Biol 211:3720–3728

    Article  PubMed  Google Scholar 

  • Zhang Z, Bodznick D (2010) The importance of N-methyl-D-aspartate (NMDA) receptors in subtraction of electrosensory reafference in the dorsal nucleus of skates. J Exp Biol 213:2700–2709

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation, the National Institutes of Health, and the Irma T. Hirschl Trust to Nathaniel B. Sawtell.

Compliance with Ethics Requirements

Krista Perks declares that she has no conflict of interest.

Nathaniel B. Sawtell declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel B. Sawtell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perks, K., Sawtell, N.B. (2019). Influences of Motor Systems on Electrosensory Processing. In: Carlson, B., Sisneros, J., Popper, A., Fay, R. (eds) Electroreception: Fundamental Insights from Comparative Approaches. Springer Handbook of Auditory Research, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-29105-1_11

Download citation

Publish with us

Policies and ethics