Skip to main content
Log in

The founder effect theory: quantitative variation and mdg-1 mobile element polymorphism in experimental populations of Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

One of the main points of Mayr's ‘founder's principle’ is the role played by inbreeding in the first generations after the foundation of a population. To test this role, we studied 10 experimental populations of Drosophila melanogaster, each founded by one brother-sister pair; these sib pairs differed for their values of viability components of their F1 offsprings. The populations so formed were maintained en masse with non-overlapping generations. Under our uniform laboratory environmental conditions, the mean viability and within-family component of variance (measured on wing length) values of the first generations depended on the viability component values of the founders. After about twenty generations, all but one of these populations reached equilibrium values similar to those of the parental population. Moreover, the insertion patterns of the mdg-1 mobile element were analysed in the founded populations by in situ hybridization on polytene chromosomes. The patterns differed between the founded populations. More than forty generations were needed before movements of transposable elements reshaped the genome in a significant way. Although it is classically admitted that inbreeding resulting from founder event ultimately leads to extinction, our results show that once the first generations are over, the founded populations become firmly established and present the characteristics of the parental population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananiev, E. V., Gvozdev, V. A., Ilyin, Y. V., Tchurikov, N. A. & Georgiev, G. P., 1978. Reiterated genes with varying location in intercalary heterochromatin regions of Drosophila melanogaster polytene chromosomes. Chromosoma 70: 1–17.

    Google Scholar 

  • Barton, N. H. & Charlesworth, B., 1984. Genetic revolution, founder effects, and speciation. Ann. Rev. Ecol. Syst. 15: 133–164.

    Google Scholar 

  • Begon, M., Chadburn, R., Bishop, J. A. & Keill, C., 1985a. Genetic variation in a semi-natural Drosophila population after a bottleneck. I. Lethals, their allelism and effective population size. Genetica 66: 11–20.

    Google Scholar 

  • Begon, M., Chadburn, R., Bishop, J. A. & Keill, C., 1985b. Genetic variation in a semi-nature Drosophila population after a bottleneck. II. The relative fitness of second chromosomes. Genetica 66: 173–181.

    Google Scholar 

  • Berg, R. L., 1982. Mutability changes in Drosophila melanogaster populations of Europe, Asia, and North America and probable mutability changes in human populations of the U.S.S.R. Jpn. J. Genet. 57: 171–183.

    Google Scholar 

  • Biémont, C., 1975. Evolution de la fertilité et de la viabilité de populations expérimentales de Drosophila melanogaster. Ann. Génét. Sél. anim. 7: 303–310.

    Google Scholar 

  • Biémont, C., 1983. Homeostasis, enzymatic heterozygosity and inbreeding depression in natural population of Drosophila melanogaster. Genetica 61: 179–189.

    Google Scholar 

  • Biémont, C., 1986. Polymorphism of the mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93: 393–397.

    Google Scholar 

  • Biémont, C., Belyaeva, E. S., Pasyukova, E. G. & Kogan, G., 1985. Mobile gene localization and viability in Drosophila melanogaster. Experientia 41: 1474–1476.

    Google Scholar 

  • Biémont, C. & Bouclier, F., 1982. Morphological variability and concealed deleterious effects in Drosophila melanogaster populations. Experientia 39: 313–315.

    Google Scholar 

  • Biémont, C. & Boulétreau-Merle, J., 1978. Inbreeding effects: embryonic development and fecundity of Drosophila melanogaster offspring. Experientia 34: 1273–1274.

    Google Scholar 

  • Biémont, C. & Lemaitre, C., 1978. Les effets de la consanguinité chez Drosophila melanogaster: influence du développement embryonnaire sur la thermogenèse des descendants. C. r. Acad. Sci. 286: 1715–1717.

    Google Scholar 

  • Bouclier, F. & Biémont, C., 1982. Morphological variation and pre-adult viability at one generation inbreeding in Drosophila melanogaster: a family-selection hypothesis. Genetica 60: 13–17.

    Google Scholar 

  • Bryant, E. H., McCommas, S. A. & Combs, L. M., 1986. The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics 114: 1191–1211.

    Google Scholar 

  • Chakraborty, R. & Nei, M., 1977. Bottleneck effects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution 31: 347–356.

    Google Scholar 

  • Charlesworth, B. & Smith, D. B., 1982. A computer model of speciation by founder effects. Genet. Res., Camb. 39: 227–236.

    Google Scholar 

  • Coyne, J. A., 1985. Genetic studies of three sibling species of Drosophila with relationship to theories of speciation. Genet. Res., Camb. 46: 169–192.

    Google Scholar 

  • Cullis, C. A., 1986. Phenotypic consequences of environmentally induced changes in plant DNA. Trends in Genet. 24: 307–309.

    Google Scholar 

  • Dobzhansky, T., Levene, H., Spassky, B. & Spassky, N., 1959. Release of genetic variability through recombination. III. Drosophila prosaltans. Genetics 44: 75–92.

    Google Scholar 

  • Falconer, D. S., 1981. Introduction to quantitative genetics. Longman, New York.

    Google Scholar 

  • Frankham, R., 1980. The founder effect and response to artificial selection in Drosophila. In: Robertson, A., (ed.) Selection experiments in laboratory and domestic animals. Common-wealth Agricultural Bureaux.

  • Goodnight, C. J., 1987. On the effect of founder events on epistatic genetic variance. Evolution 41: 80–92.

    Google Scholar 

  • Gvozdev, V. A., Belyaeva, E. Sp., Ilyin, Y. V., Amosova, I. S. & Kaidanov, L. Z., 1981. Selection and transposition of mobile dispersed genes in Drosophila melanogaster. Cold Spring Harb. Symp. quant. Biol. 16: 13–47.

    Google Scholar 

  • Ilyin, Y. V., Chmeliauskaite, V. G. & Georgiev, G. P., 1980. Double-stranded sequences in RNA of Drosophila melanogaster: relation to mobile dispersed genes. Nucleic Acid Res. 8: 3439–3457.

    Google Scholar 

  • James, J. W., 1971. The founder effect and response to artificial selection. Genet. Res., Camb. 16: 241–250.

    Google Scholar 

  • Junakovic, N., DiFranco, C., Barsonti, P. & Palumbo, G., 1987. Transposition of Copia-like nomadic elements can be induced by heat shock. J. mol. Evol. 24: 89–93.

    Google Scholar 

  • Lande, R., 1980. Genetic variation and phenotypic evolution during allopatric speciation. Am. Nat. 116: 463–479.

    Google Scholar 

  • Langer-Safer, P. R., Levine, M. & Ward, D. C., 1982. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. natn. Acad. Sci. USA 79: 4381–4385.

    Google Scholar 

  • Leigh Brown, A. J. & Moss, J. E., 1987. Transposition of the I element and copia in a natural population of Drosophila melanogaster. Genet. Res., Camb. 49: 121–128.

    Google Scholar 

  • Lerner, I. M., 1954. Genetic homeostasis. Oliver & Boyd, Edinburgh.

    Google Scholar 

  • Lints, F. A. & Bourgois, M., 1984. Population crash, population flush and genetic variability in cage populations of Drosophila melanogaster. Génét. Sél. Evol. 16: 45–56.

    Google Scholar 

  • Mackay, T. F. C., 1985. Transposable element-induced response to artifical selection in Drosophila melanogaster. Genetics 111: 351–374.

    Google Scholar 

  • Mackay, T. F. C., 1986. Transposable element-induced fitness mutations in Drosophila melanogaster. Genet. Res., Camb. 48: 77–87.

    Google Scholar 

  • Maruyama, T. & Fuerst, P. A., 1984. Populations bottlenecks and non equilibrium models in populations genetics. I. Alleles numbers when populations evolve from zero variability. Genetics 108: 745–763.

    Google Scholar 

  • Mayr, E., 1954. Change of genetic environment and evolution. In: Evolution as a process, Allen & Unwin, London.

    Google Scholar 

  • Nei, M., Maruyama, T. & Chakraborty, R., 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.

    Google Scholar 

  • Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P., 1977. Labeling desoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J. mol. Biol. 113: 237–251.

    Google Scholar 

  • Robertson, A., 1952. The effect of inbreeding on the variation due to recessive genes. Genetics 37: 189–207.

    Google Scholar 

  • Rubin, G. M., 1983. Dispersed repetitive DNAs in Drosophila. In: Shapiro, J. A. (ed.) Mobile genetic elements, Academic Press, London, New York.

    Google Scholar 

  • Sirkkoma, S., 1983. Calculation on the decrease of genetic variation due to the founder effect. Hereditas 99: 11–20.

    Google Scholar 

  • Spiess, E. B., 1959. Release of genetic variability through recombination. II. Drosophila persimilis. Genetics 44: 43–58.

    Google Scholar 

  • Tchurikov, N. A., Ilyin, Y. V., Skryabin, K. B., Ananiev, E. V., Bayev, A. A., Krayev, A. S., Zelentsova, E. S., Kulguskin, V. V., Lyubomirskaya, N. V. & Georgiev, G. P., 1981. General properties of mobile dispersed genetic elements in Drosophila. Cold Spring Harbor Symp. quant. Biol. 45: 655–665.

    Google Scholar 

  • Yukuhiro, K., Harada, K. & Mukai, T., 1985. Viability mutations induced by the P elements in Drosophila melanogaster. Jpn. J. Genet. 60: 531–537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terzian, C., Biémont, C. The founder effect theory: quantitative variation and mdg-1 mobile element polymorphism in experimental populations of Drosophila melanogaster . Genetica 76, 53–63 (1988). https://doi.org/10.1007/BF00126010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00126010

Keywords

Navigation