Skip to main content
Log in

A high frequency of heritable changes in natural populations of Drosophila melanogaster in Ukraine

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Spontaneous mutations are thought to have a stable rate for a given species. If non-adaptive, they appear at low frequencies and are governed by drift. However, environmental factors have been reported to cause spread of non-adaptive mutations in populations, governed by mechanisms, such as genetic assimilation. In the present study, we report a simultaneous appearance of a mutant and apparently non-adaptive C2 vein in Drosophila melanogaster at higher than expected frequencies in several distant populations, which excludes the role of drift or selection as the cause of the reported mutation frequencies. We discuss explanations of the phenomenon, including the role of external factors, such as temperature, in the possible genetic assimilation of the trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baer, C.F., Miyamoto, M.M., and Denver, D.R., Mutation rate variation in multicellular eukaryotes: causes and consequences, Nat. Rev. Genet., 2007, vol. 8, no. 8, pp. 619–631.

    Article  CAS  PubMed  Google Scholar 

  2. Yang, H.P., Tanikawa, A.Y., and Kondrashov, A.S., Molecular nature of 11 spontaneous de novo mutations in Drosophila melanogaster, Genetics, 2001, vol. 157, no. 3, pp. 1285–1292.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Watanabe, Y., Takahashi, A., Itoh, M., and Takano Shimizu, T., Molecular spectrum of spontaneous de novo mutations in male and female germline cells of Drosophila melanogaster, Genetics, 2009, vol. 181, no. 3, pp. 1035–1043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berg, R.L., A genetical analysis of wild populations of Drosophila melanogaster, Dros. Inform. Serv., 1941, vol. 15.

  5. Kozeretska, I.A., Protsenko, O.V., Afanasyeva, E.S., Rushkovskii, S.R., Chuba, A.I., Mousseau, T.A., and Moller, A.P., Mutation processes in natural populations of Drosophila melanogaster and Hirundo rustica from radioactively contaminated areas, Cytol. Genet., 2008, vol. 42, no. 4, pp. 267–271.

    Article  Google Scholar 

  6. Radionov, D.B., Protsenko, O.V., Andriyevskiy, A.M., Totsky, V.N., Kucherov, V.A., and Kozeretska, I.A., Stability of genetic parameters in a population of Drosophila melanogaster from Odesa, Cytol. Genet., 2011, vol. 45, no. 3, pp. 187–190.

    Article  Google Scholar 

  7. Ayala, F.J., Genetic variation in natural populations: problem of electrophoretically cryptic alleles, Proc. Natl. Acad. Sci. USA, 1982, vol. 79, no. 2, pp. 550–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Univ. Press, 1983.

    Book  Google Scholar 

  9. Waddington, C.H., Genetic assimilation of an acquired character, Evolution, 1953, vol. 7, no. 2, pp. 118–126.

    Article  Google Scholar 

  10. Parsons, P.A., Genes, behavior and evolutionary process: the genus Drosophila, Adv. Genet., 1977, vol. 19, pp. 1–32.

    Article  CAS  PubMed  Google Scholar 

  11. Roberts, D.B., Drosophila: A Practical Approach, 2nd ed., Oxford: IRL Press, 1998.

    Google Scholar 

  12. Zakharov, I.K. and Golubovskiy, M.D., The returning fashion for a yellow mutation in a natural population of D. melanogaster from Uman, Russ. J. Genet., 1985, vol. 21, no. 8, pp. 1298–1305.

    Google Scholar 

  13. Berg, R.L., A simultaneous mutability rise at the singed locus in two out of three Drosophila melanogaster population study in 1973, Dros. Inform. Serv., 1974, vol. 51, pp. 100–102.

    Google Scholar 

  14. Ivanov, Yu.N. and Golubovskiy, M.D., Increased mutability and the appearance of mutationally instable alleles of the locus singed in populations of D. melanogaster, Russ. J. Genet., 1977, vol. 13, no. 4, pp. 655–666.

    Google Scholar 

  15. Kondrashov, F.A. and Kondrashov, A.S., Measurements of spontaneous rates of mutations in the recent past and the near future, Philos. Trans. R. Soc. Lond. B, Biol. Sci., 2010, vol. 365, no. 1544, pp. 1169–1176.

    Article  Google Scholar 

  16. Schertel, C., Rutishauser, T., Forstemann, K., and Basler, K., Functional characterization of Drosophila microRNAs by a novel in vivo library, Genetics, 2012, vol. 192, no. 4, pp. 1543–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, H., Yoo, S.J., Lee, J.H., Kim, W., Yoo, S.K., Fitzgerald, H., Carrington, J.C., and Ahn, J.H., Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis, Nucleic Acids Res., 2010, vol. 38, no. 9, pp. 3081–3093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cossetti, C., Lugini, L., Astrologo, L., Saggio, I., Fais, S., and Spadafora, C., Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes, PLoS One, 2014, vol. 9, no. 7, p. e101629.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kozeretska.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozeretska, I.A., Serga, S.V., Kunda-Pron, I. et al. A high frequency of heritable changes in natural populations of Drosophila melanogaster in Ukraine. Cytol. Genet. 50, 106–109 (2016). https://doi.org/10.3103/S0095452716020092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452716020092

Keywords

Navigation