Skip to main content
Log in

Spin relaxation of 3He to paramagnetic centers in surfaces at very low temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The memory function formalism is used to derive a generalized golden rule expression for the spin-lattice relaxation rate 1/T 1 for 3He to paramagnetic centers embedded in or residing on surfaces in contact with the 3He. This expression is applied to several simple models of relaxation to paramagnetic spins which do not interact among themselves, both for 3He in the Fermi-liquid phase and for a solid surface layer of 3He on the substrate. The magnitude of 1/T 1 is calculated for each case as well as the temperature and magnetic field dependence. Finally, the relationship between the spin-lattice relaxation rate and the Kapitza conductance across surfaces via magnetic interactions is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Kelly, Thesis, Cornell University (1974).

  2. J. F. Kelly and R. C. Richardson, in Low Temperature Physics—LT13 (Plenum, New York, 1974), Vol. 1, p. 167.

    Google Scholar 

  3. P. Monod and J. A. Cowen, Service de Physique du Solide et de Resonance Magnetique, Centre d'Etudes Nucleaires de Saclay, Technical Report (1967), unpublished.

  4. B. P. Cowan, Thesis, University of Sussex (1976).

  5. R. J. Rollefson, Phys. Rev. Lett. 29, 410 (1972).

    Google Scholar 

  6. R. F. Brewer and J. S. Rolt, Phys. Rev. Lett. 29, 1485 (1972).

    Google Scholar 

  7. D. J. Creswell, D. F. Brewer, and A. L. Thomson, Phys. Rev. Lett. 29, 1144 (1972).

    Google Scholar 

  8. H. T. Weaver, J. Phys. Chem. Solids 34, 421 (1973).

    Google Scholar 

  9. D. C. Hickernell, D. L. Husa, and J. G. Daunt, Phys. Lett. 49A, 435 (1974).

    Google Scholar 

  10. S. G. Hedge, E. Lerner, and J. G. Daunt, Phys. Lett. 49A, 438 (1974).

    Google Scholar 

  11. N. S. Sullivan, J. Low Temp. Phys. 22, 313 (1976).

    Google Scholar 

  12. R. Chapman and M. Bloom, Can. J. Phys. 54, 861 (1976).

    Google Scholar 

  13. O. Evenson, D. F. Brewer, and A. L. Thomson, in Proceedings of the Eleventh International Conference on Low Temperature Physics (1968), Vol. 1, p. 125.

  14. R. L. Garwin and H. R. Reich, Phys. Rev. 115, 1478 (1959).

    Google Scholar 

  15. H. R. Hart and J. C. Wheatley, Phys. Rev. Lett. 4, 3 (1960).

    Google Scholar 

  16. N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).

    Google Scholar 

  17. W. E. Blumberg, Phys. Rev. 119, 79 (1960).

    Google Scholar 

  18. H. E. Rorschach, Physica 30, 38 (1964).

    Google Scholar 

  19. M. Goldman, Phys. Rev. 138, A1675 (1965).

    Google Scholar 

  20. G. R. Khutsishvili, Sov. Phys.—Uspekhi 8, 743 (1966); 11, 802 (1969).

    Google Scholar 

  21. L. I. Buishvili, N. P. Giorgadze, and G. R. Khutsishvili, Zh. Eksp. Teor. Fiz. 33, 776 (1971).

    Google Scholar 

  22. P. G. de Gennes, J. Phys. Chem. Solids 7, 345 (1958).

    Google Scholar 

  23. C. C. Sung and L. G. Arnold, Phys. Rev. B 7, 2095 (1971).

    Google Scholar 

  24. M. G. Richards, in Advances in Magnetic Resonance, Vol. 5, J. S. Waugh, ed. (Academic Press, New York, 1971).

    Google Scholar 

  25. R. A. Guyer, R. C. Richardson, and L. I. Zane, Rev. Mod. Phys. 43, 532 (1971).

    Google Scholar 

  26. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, 1961).

  27. C. P. Poole, Jr., and H. A. Farach, Relaxation in Magnetic Resonance (Academic Press, New York, 1971).

    Google Scholar 

  28. C. P. Slichter, Principles of Magnetic Resonance (Harper and Row, New York, 1963).

    Google Scholar 

  29. J. C. Verstelle and D. A. Curtis, in Handbuch der Physik, S. Flügge and H. P. Wijn, eds. (Springer-Verlag, Berlin, 1968), p. 1.

    Google Scholar 

  30. A. J. Leggett and M. Vuorio, J. Low Temp. Phys. 3, 359 (1970).

    Google Scholar 

  31. D. L. Mills and M. T. Béal-Monod, Phys. Rev. A 10, 343 (1974).

    Google Scholar 

  32. D. L. Mills and M. T. Béal-Monod, Phys. Rev. A 10, 2473 (1974).

    Google Scholar 

  33. D. Hone, Phys. Rev. 125, 1494 (1962).

    Google Scholar 

  34. R. A. Tahir-Kheli and D. G. McFadden, Phys. Rev. 182, 604 (1969).

    Google Scholar 

  35. B. P. Cowan, M. G. Richards, A. L. Thomson, and W. J. Mullin, Phys. Rev. Lett. 38, 165 (1977).

    Google Scholar 

  36. J. P. Harrison, Phys. Rev. Lett. 36, 539 (1976).

    Google Scholar 

  37. G. L. Pollack, Rev. Mod. Phys. 41, 48 (1969).

    Google Scholar 

  38. L. J. Challis, J. Phys. C 7, 481 (1974).

    Google Scholar 

  39. W. R. Abel, A. C. Anderson, W. C. Black, and J. C. Wheatley, Phys. Rev. Lett. 16, 263 (1966).

    Google Scholar 

  40. R. A. Guyer, J. Low Temp. Phys. 10, 157 (1973).

    Google Scholar 

  41. D. Forster, Hydrodynamics, Fluctuations, Broken Symmetry and Correlation Functions (Benjamin, Reading, Massachusetts, 1975); see also B. J. Berne and G. D. Harp, Adv. Chem. Phys. XVII, 63 (1970).

    Google Scholar 

  42. W. Götze and K. H. Michel, in Dynamical Properties of Solids, G. K. Horton and A. A. Maradudin, eds. (North-Holland, Amsterdam, 1974).

    Google Scholar 

  43. Charles Kittel, Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971), Chapter 15.

    Google Scholar 

  44. R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).

    Google Scholar 

  45. Hazime Mori, Prog. Theor. Phys. 33, 423 (1965).

    Google Scholar 

  46. Hazime Mori, Prog. Theor. Phys. 34, 399 (1965).

    Google Scholar 

  47. L. P. Kadanoff and P. C. Martin, Ann. Phys. (N.Y.) 24, 419 (1963).

    Google Scholar 

  48. P. C. Martin, in Many-Body Physics, C. De Witt and R. Balian, eds. (Gordon and Breach, New York, 1968).

    Google Scholar 

  49. M. Salomaa, Z. Physik B 25, 49 (1977).

    Google Scholar 

  50. F. Carboni and P. M. Richards, Phys. Rev. 177, 889 (1969).

    Google Scholar 

  51. F. Carboni and P. M. Richards, J. Appl. Phys. 39, 967 (1968).

    Google Scholar 

  52. C. G. Windsor, Proc. Phys. Soc. (Lond.) 91, 353 (1967).

    Google Scholar 

  53. W. Götze and P. Wölfle, J. Low Temp. Phys. 5, 575 (1971).

    Google Scholar 

  54. M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957), Chapter IV.

    Google Scholar 

  55. M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964), Section 5–3.

    Google Scholar 

  56. M. T. Béal-Monod and D. L. Mills, J. Low Temp. Phys. 30, 289 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by National Science Foundation grant number DMR77-18329.

Research performed under the auspices of ERDA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albers, R.C., Wilkins, J.W. Spin relaxation of 3He to paramagnetic centers in surfaces at very low temperatures. J Low Temp Phys 34, 105–156 (1979). https://doi.org/10.1007/BF00118552

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118552

Keywords

Navigation