Skip to main content
Log in

Aging Effects in the Nonequilibrium Behavior of Magnetic Superstructures and Their Manifestation in Magnetoresistance

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The nonequilibrium behavior of the magnetic superstructures consisting of alternating magnetic and nonmagnetic nanolayers is numerically simulated by Monte Carlo methods. An analysis of the calculated two-time dependence of an autocorrelation function during the evolution from a high-temperature initial state has revealed aging effects, which are characterized by slowing down of the correlation effects in the system when the waiting time increases. In contrast to bulk magnetic systems, the aging effects are shown to appear in magnetic superstructures both near the critical ferromagnetic ordering temperature Tc in films and in a low-temperature phase at TTc. The aging effects in the correlation processes in a magnetic multilayer structure weaken when ferromagnetic film thickness N increases at T = Tc(N), and these effects increase with film thickness N at temperatures T = Tc(N)/2. When simulating the transport properties of the Co/Cu(001)/Co structure, we calculated the temperature dependence of equilibrium magnetoresistance and were the first to reveal the influence of nonequilibrium behavior of the structure on the magnetoresistance and the manifestation of the aging effects in it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, Rep. Progr. Phys. 71, 056501 (2008).

    Article  ADS  Google Scholar 

  2. G. Bihlmayer, P. Ferriani, S. Baud, M. Lezaic, S. Heinze, and S. Blugel, in NIC Series, Vol. 32: Proceedings of the NIC Symposium 2006, Ed. by G. Munster, D. Wolf, and M. Kremer (Julich, 2006), p. 151.

  3. Y. Li and K. Baberschke, Phys. Rev. Lett. 68, 1208 (1992).

    Article  ADS  Google Scholar 

  4. F. Huang, M. T. Kief, G. J. Mankey, and R. F. Willis, Phys. Rev. B 49, 3962 (1994).

    Article  ADS  Google Scholar 

  5. J. A. C. Bland and B. Heinrich, Ultrathin Magnetic Structures IV (Springer, Berlin, 2005).

    Book  Google Scholar 

  6. V. V. Ustinov, M. A. Milyaev, and L. I. Naumova, SPIN 04, 1440001 (2014).

    Article  Google Scholar 

  7. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  8. G. Binash, P. Grunberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

    Article  ADS  Google Scholar 

  9. A. Barthelemy and A. Fert, Phys. Rev. B 43, 13124 (1991).

    Article  ADS  Google Scholar 

  10. M. Julliere, Phys. Lett. A 54, 225 (1975).

    Article  ADS  Google Scholar 

  11. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater. 139, L231 (1995).

    Article  ADS  Google Scholar 

  12. R. C. Sousa, J. J. Sun, V. Soares, P. P. Freitas, A. Kling, M. F. da Silva, and J. C. Soares, Appl. Phys. Lett. 73, 3288 (1998).

    Article  ADS  Google Scholar 

  13. T. Mukherjee, M. Pleimling, and Ch. Binek, Phys. Rev. B 82, 134425 (2010).

    Article  ADS  Google Scholar 

  14. V. V. Prudnikov, P. V. Prudnikov, A. N. Purtov, and M. V. Mamonova, JETP Lett. 104, 776 (2016).

    Article  ADS  Google Scholar 

  15. E. Vincent, J. Hammann, M. Ocio, J. P. Bouchaud, and L. F. Cugliandolo, Lect. Notes Phys. 492, 184 (1997).

  16. L. Berthier and J. Kurchan, Nat. Phys. 9, 310 (2013).

    Article  Google Scholar 

  17. P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).

    Article  ADS  Google Scholar 

  18. V. V. Prudnikov, P. V. Prudnikov, and M. V. Mamonova, Phys. Usp. 60, 762 (2017).

    Article  ADS  Google Scholar 

  19. V. V. Prudnikov, A. N. Vakilov, and P. V. Prudnikov, Phase Transitions and Methods of Their Computer Simulation (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  20. V. V. Prudnikov, P. V. Prudnikov, and A. N. Vakilov, Theoretical Methods of Description of Non-Equilibrium Critical Behavior of Structurally Disordered Systems (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  21. P. V. Prudnikov, V. V. Prudnikov, and M. A. Medvedeva, JETP Lett. 100, 446 (2014).

    Article  ADS  Google Scholar 

  22. P. V. Prudnikov, V. V. Prudnikov, M. A. Menshikova, and N. I. Piskunova, J. Magn. Magn. Mater. 387, 77 (2015).

    Article  ADS  Google Scholar 

  23. V. V. Prudnikov, P. V. Prudnikov, and D. E. Romanovskiy, J. Phys. D 49, 235002 (2016).

    Article  ADS  Google Scholar 

  24. A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1982; Pergamon, Oxford, 1979).

  25. Sh. Ma, Modern Theory of Critical Phenomena (Benjamin, New York, 1976).

    Google Scholar 

  26. V. S. Dotsenko, Phys. Usp. 36, 457 (1995).

    Article  ADS  Google Scholar 

  27. Z. Q. Qiu, J. Pearson, and S. D. Bader, Phys. Rev. Lett. 67, 1646 (1991).

    Article  ADS  Google Scholar 

  28. B. Heinrich, T. Monchesky, and R. Urban, J. Magn. Magn. Mater. 236, 339 (2001).

    Article  ADS  Google Scholar 

  29. A. Hahlin, C. Andersson, J. Hunter Dunn, B. Sanyal, O. Karis, and D. Arvanitis, Phys. Rev. B 73, 134423 (2006).

    Article  ADS  Google Scholar 

  30. S. T. Bramwell and P. C. W. Holdsworth, J. Phys: Condens. Matter 5, L53 (1993).

    ADS  Google Scholar 

  31. S. T. Bramwell and P. C. W. Holdsworth, J. Appl. Phys. 73, 6096 (1993).

    Article  ADS  Google Scholar 

  32. L. Schulke and B. Zheng, Phys. Lett. A 215, 81 (1996).

    Article  ADS  Google Scholar 

  33. V. V. Prudnikov, P. V. Prudnikov, B. Zheng, S. V. Dorofeev, and V. Yu. Kolesnikov, Prog. Theor. Phys. 117, 973 (2007).

    Article  ADS  Google Scholar 

  34. V. V. Prudnikov, P. V. Prudnikov, A. S. Krinitsyn, A. N. Vakilov, E. A. Pospelov, and M. V. Rychkov, Phys. Rev. E 81, 011130 (2010).

    Article  ADS  Google Scholar 

  35. P. V. Prudnikov, V. V. Prudnikov, E. A. Pospelov, P. N. Malyarenko, and A. N. Vakilov, Progr. Theor. Exp. Phys. 2015, 053A01 (2015).

  36. M. A. M. Gijs and G. E. W. Bauer, Adv. Phys. 46, 285 (1997).

    Article  ADS  Google Scholar 

  37. M. A. M. Gijs, J. B. Giesberg, M. T. Johnson, et al., J. Appl. Phys. 75, 6709 (1994).

    Article  ADS  Google Scholar 

  38. V. V. Prudnikov, P. V. Prudnikov, and D. E. Romanovskii, JETP Lett. 102, 668 (2015).

    Article  ADS  Google Scholar 

  39. J. Mathon, Contemp. Phys. 32, 143 (1991).

    Article  ADS  Google Scholar 

  40. M. Henkel and M. Pleimling, Non-Equilibrium Phase Transitions (Springer, Heidelberg, 2010), Vol. 2, p. 544.

    Book  MATH  Google Scholar 

  41. V. V. Prudnikov, P. V. Prudnikov, and E. A. Pospelov, J. Exp. Theor. Phys. 118, 401 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Prudnikov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudnikov, V.V., Prudnikov, P.V. & Mamonova, M.V. Aging Effects in the Nonequilibrium Behavior of Magnetic Superstructures and Their Manifestation in Magnetoresistance. J. Exp. Theor. Phys. 127, 731–741 (2018). https://doi.org/10.1134/S1063776118100060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118100060

Keywords

Navigation