Skip to main content
Log in

Hot Electron Relaxation in Ferromagnetic Metals: Memory Function Approach

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This study leads to the investigation of the non-equilibrium electron relaxation in ferromagnetic metals. Here we consider the relaxation of electrons due to their coupling with magnons and phonons in a ferromagnet using the memory function approach. In the present model, electrons live at a higher temperature than that of the phonon and magnon baths, mimicking a non-equilibrium steady-state situation. Further we analyze theoretically the generalized Drude scattering rate within the framework of two temperature model and study the full frequency and temperature behavior for it. In zero frequency regime, the rate of electron-magnon scattering and electron-phonon scattering shows a linear temperature dependence at higher temperature values greater than Debye temperature. Whereas at lower temperature values, \(T\ll \Theta _{D}\), corresponding scattering rates follow the temperature behavior as (\(1/\tau _{e-p} \varpropto T^3\)) and (\(1/\tau _{e-m} \varpropto T^{3/2}\)), respectively. In the AC regime, we compute that \(1/\tau \propto \omega ^2\) for \(\omega \ll \omega _{D}\) and for the values greater than the Debye frequency, it is \(\omega\)-independent. Also, in lower frequency and zero temperature limit, we have observed the different frequency scale of electron-magnon and electron-phonon scattering, i.e., (\(1/\tau \propto \omega ^{3/2}\)) and (\(1/\tau \propto \omega ^{3}\)). These results can be viewed with the pump-probe experimental setting for ferromagnetic metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. where the current density operator commutes with the non-interacting parts of the Hamiltonian, the interacting part, i.e., electron-phonon gives

    $$\begin{aligned}{}[J_1, H]= \sum _{k,k'}[(\mathbf {k}-\mathbf {k'}).\hat{n}][D(\mathbf {k}-\mathbf {k'})c^\dagger _{\mathbf {k}\sigma } c_{\mathbf {k'}\sigma }b_{\mathbf {k}-\mathbf {k'}}-H.c.]. \end{aligned}$$
    (32)

    Here, unit vector \(\hat{n}\) defines the direction of current.

References

  1. Schoenlein, R.W., Lin, W.Z., Fujimoto, J.G., Eesley, G.L.: Femtosecond studies of nonequilibrium electronic processes in metals. Phys. Rev. Lett. 58, 1680–1683 (1987)

    Article  ADS  Google Scholar 

  2. Falkovsky, L.A., Mishchenko, E.G.: Electron-lattice kinetics of metals heated by ultrashort laser pulses. Zh. Eksp. Teor. Fiz. 115, 149–157 (1999)

    Google Scholar 

  3. Wong, B. T., Meng, M. P.: Two-Temperature Model Coupled with e-Beam Transport. In: Thermal Transport for Applications in Micro/Nanomachining. Microtechnology and MEMS. Springer, Berlin, Heidelberg (2008)

  4. Singh, N.: Electronic Transport Theories from Weakly to Strongly Correlated Materials. CRC Press (2016)

  5. Singh, N.: Two-Temperature Model of non-equilibrium electron relaxation: A Review. Int. J. Mod. Phys. B 24, 1141–1158 (2010)

    Article  ADS  Google Scholar 

  6. Das, N., Singh, N.: Hot electron relaxation in metals within the Götze-Wölfle memory function formalism. Int. J. Mod. Phys. B 30, 1650071 (2016)

    Article  ADS  Google Scholar 

  7. Rani, L., Bhalla, P., Singh, N.: Nonequilibrium electron relaxation in graphene. Int. J. Mod. Phys. B 33, 1950183 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. Mahan, G. D.: Many-Particle Physics (Physics of Solids and Liquids). Kluwer Academic/Plenum Publishers (2000)

  9. Ziman, J. M.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford Classic Texts in the Physical Sciences (2001)

  10. Kasuyae, T.: Electrical Resistance of Ferromagnetic Metals. Progress of Theoretical Physics 16(1), 58–63 (1956)

    Article  ADS  Google Scholar 

  11. Goodings, D.A.: Electrical resistivity of ferromagnetic metals at low temperatures. Phys. Rev. 132, 542 (1963)

    Article  ADS  Google Scholar 

  12. Götze, W., Wölfle, P.: Homogeneous dynamical conductivity of simple metals. Phys. Rev. B 6, 1226 (1972)

    Article  ADS  Google Scholar 

  13. Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan 12, 570 (1957)

  14. Mori, H.: Transport, collective motion, and Brownian motion. Prog. Theor. Phys. 33, 423 (1965)

    Article  ADS  Google Scholar 

  15. Bhalla, P., Das, N., Singh, N.: Moment expansion to the memory function for generalized Drude scattering rate. Phys. Lett. A 380, 2000 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kumari, K., Singh, N.: Memory function formalism :an overview. Eur. J. Phys. 41, 053001 (2020)

    Article  Google Scholar 

  17. Zwanzig, R.: Memory effects in irreversible thermodynamics. Phys. Rev. 124, 983 (1961)

    Article  ADS  Google Scholar 

  18. Fert, A., Campbell, I. A.: Electrical resistivity of ferromagnetic nickel and iron based alloys.J Phys. F: Metal Phys. 6 (5), 849-871 (1976)

  19. Raquet, B., Viret, M., Sondergard, E., Cespedes, O., Mamy, R.: Electron-magnon scattering and magnetic resistivity in 3d ferromagnets. Phys. Rev. B 66, 024433 (2002)

    Article  ADS  Google Scholar 

  20. Raquet, B., Viret, M., Broto, J.M., Sondergard, E., Cespedes, O., Mamy, R.: Magnetic resistivity and electron-magnon scattering in 3d ferromagnets. J. of Applied Phys. 91(10), 8129 (2002)

    Article  ADS  Google Scholar 

  21. Carpene, E., Mancini, E., Dallera, C., Brenna, M., Puppin, E., De Silvestri, S.: Dynamics of electron-magnon interaction and ultrafast demagnetization in thin iron films. Phys. Rev. B 78, 174422 (2008)

    Article  ADS  Google Scholar 

  22. Mller, M.C.T.D., Blgel, S., Friedrich, C.: Electron-magnon scattering in elementary ferromagnets from first principles: Lifetime broadening and band anomalies. Phys. Rev. B 100, 045130 (2019)

    Article  ADS  Google Scholar 

  23. Essert, S., Schneider, H.C.: Electron-phonon scattering dynamics in ferromagnetic metals and their influence on ultrafast demagnetization processes. Phys. Rev. B 84, 224405 (2011)

    Article  ADS  Google Scholar 

  24. Holstein, T.: Theory of transport phenomena in a electron-phonon gas. Ann. Phys. NY 29, 410 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  25. Rani, L., Singh, N.:Dynamical electrical conductivity of graphene. J. Phys.: Condens. Matter 29, 255602 (2017)

Download references

Acknowledgements

We thank to Navinder Singh and Haranath Ghosh for many useful discussions. One of the authors (L.R) is supported by the Scientific and Technical Research Council of Turkey (T\(\ddot{U}\)BITAK) ARDEB International project no 118F187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luxmi Rani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, L., Sevik, C. Hot Electron Relaxation in Ferromagnetic Metals: Memory Function Approach. J Supercond Nov Magn 35, 167–177 (2022). https://doi.org/10.1007/s10948-021-05898-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-05898-8

Keywords

PACS

Navigation