Skip to main content
Log in

Theory of motional inhibition of interlayer quantum tunneling in thin 3He films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

An attempt is made to interpret NMR data on 3He films for coverages just over one monolayer in terms of motion due to the quantum exchange of particles between layers. A summary of the relevant data and of various possible relaxation mechanisms is given and it is found that a portion of the data seems amenable to an interlayer exchange interpretation. The detailed theory of this process requires the use of the exchange operator concept and a Kubo-theory treatment of the effect of second-layer motion on the exchange process. It is shown that the “bare” interlayer exchange process characterized by constant J 12 is slowed by second-layer translational motion so that the effective exchange parameter becomes \~J 12J 12 22, where ɛ2 is a second-layer single-particle translational energy. In order to fit the NMR data it is found that ɛ2 must be evaluated in the classical limit rather than the degenerate Fermi limit, and that \~J 12J 11, the exchange energy within the first-layer solid. These conditions require a helium second-layer effective mass of m * ≥ 5m and J 12≥600J 11, which are anomously large values for these parameters. The relation of this analysis to the problem of “surface ferromagnetization” in bulk 3He is also discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Dash, Films on Solid Surfaces (Academic Press, New York, 1975); M. Bretz, J. G. Dash, D. C. Hickernell, E. O. McLean, and O. E. Vilches, Phys. Rev. A 8, 1589 (1973); 9, 2657 (1974); R. L. Elgin and D. L. Goodstein, Phys. Rev. A 9, 2657 (1974); R. L. Elgin, J. M. Greif, and D. L. Goodstein, Phys. Rev. Lett. 41, 1723 (1978).

    Google Scholar 

  2. K. Carneiro, W. D. Ellenson, L. Passell, J. P. McTague, and H. Taub, Phys. Rev. Lett. 37, 1695 (1976).

    Google Scholar 

  3. B. P. Cowan, Thesis, University of Sussex (1976), unpublished.

  4. B. P. Cowan, M. G. Richards, A. L. Thomson, and W. J. Mullin, Phys. Rev. Lett. 38, 165 (1977).

    Google Scholar 

  5. B. P. Cowan, J. R. Owers-Bradley, A. L. Thomson, and M. G. Richards, in Quantum Fluids and Solids, S. B. Trickey, E. D. Adams, and J. W. Dufty, eds. (Plenum Press, New York, 1977), p. 441.

    Google Scholar 

  6. J. R. Owers-Bradley, A. L. Thomson, and M. G. Richards, J. Phys. (Paris) 39 (Suppl. 8), C6–299 (1978).

    Google Scholar 

  7. J. R. Owers-Bradley, B. P. Cowan, M. G. Richards, and A. L. Thomson, Phys. Lett. 65A, 424 (1978).

    Google Scholar 

  8. J. R. Owers-Bradley, Thesis, University of Sussex (1978), unpublished.

  9. K. Satoh and T. Sugawara, J. Phys. 39 (Suppl. 8), C6–281 (1978); J. Phys. Soc. Japan Lett. 45, 347 (1978); J. Low Temp. Phys., to be published.

    Google Scholar 

  10. R. J. Rollefson, Phys. Rev. Lett. 29, 40 (1972); D. P. Grimmer and K. Lusczynski, in Low Temperature Physics LT-13, K. D. Timmerhaus, W. J. Sullivan, and E. F. Hammel, eds. (Plenum Press, New York, 1973), p. 170; J. Low Temp. Phys. 30, 153 (1978); D. C. Hickernell, D. L. Husa, and J. G. Daunt, Phys. Lett. 49A, 435 (1974); S. G. Hegde, E. Lerner, and J. G. Daunt, Phys. Lett. 49A, 437 (1974).

    Google Scholar 

  11. W. J. Mullin, Phys. Rev. Lett. 39, 345 (1977).

    Google Scholar 

  12. A. I. Ahonen, T. A. Alvesalo, T. Haavasoja, and M. C. Veuro, Phys. Rev. Lett. 41, 494 (1978); J. Phys. (Paris) 39 (Suppl. 8), C6–285 (1978).

    Google Scholar 

  13. H. M. Bozler, T. Bartolac, K. Luey, and A. L. Thomson, Phys. Rev. Lett. 41, 490 (1978); J. Phys. (Paris) 39 (Suppl. 8), C6–283 (1978).

    Google Scholar 

  14. D. Thouless, Proc. Phys. Soc. (Lond.) 86, 893 (1965); L. H. Nosanow and C. M. Varma, Phys. Rev. 187, 660 (1969); Phys. Rev. A 1, 133 (1970); R. A. Guyer, Phys. Rev. A 10, 1785 (1974); A. K. McMahan, J. Low Temp. Phys. 8, 115 (1972); W. J. Mullin, Phys. Rev. B 12, 3718 (1975).

    Google Scholar 

  15. S. R. Hartmann, Phys. Rev. 133, A17 (1964).

    Google Scholar 

  16. R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954); R. Kubo, J. Phys. Soc. Japan 17, 1100 (1962); R. Kubo, Nuovo Cimento Suppl. 6, 1063 (1957); J. Villain, Phys. (Paris) 32, Cl-310 (1971).

    Google Scholar 

  17. A. Abragam, Principles of Nuclear Resonance (Oxford Univ. Press, Oxford, 1961), p. 114.

    Google Scholar 

  18. R. C. Richardson, A. Landesman, E. Hunt, and H. Meyer, Phys. Rev. 146, 244 (1966); A. Landesman, Ann. Phys. (Paris) 8, 53 (1973).

    Google Scholar 

  19. A. Landesman, Phys. Lett. 54A, 137 (1975).

    Google Scholar 

  20. C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963), p. 361.

    Google Scholar 

  21. W. J. Mullin, D. J. Creswell, and B. P. Cowan, J. Low Temp. Phys. 25, 247 (1976).

    Google Scholar 

  22. J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, London, 1964), p. 117.

    Google Scholar 

  23. M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions (NBS, 1964).

  24. M. G. Richards, private communication.

  25. J. K. Kjems, L. Passell, H. Taub, J. G. Dash, and A. D. Novaco, Phys. Rev. B 13, 1446 (1976).

    Google Scholar 

  26. S. W. Van Scriver and O. E. Vilches, Phys. Rev. B 18, 285 (1978).

    Google Scholar 

  27. A. D. Novaco, Phys. Rev. B 13, 3194 (1976).

    Google Scholar 

  28. D. E. Hagen, A. D. Novaco, and F. S. Milford, in Proc. of 2nd Int. Symp. on Adsorption-Desorption Phenomena, Florence (Academic Press, New York, 1971); A. D. Novaco and F. J. Milford, Phys. Rev. A 5, 783 (1972).

    Google Scholar 

  29. J. B. Sokoloff and A. Widom, International Quantum Crystals Conference (Colo. State Univ., Fort Collins, Colorado, 1977).

    Google Scholar 

  30. K. Yosida, Phys. Rev. 106, 893 (1957).

    Google Scholar 

  31. S. W. Van Scriver, in Low Temperature Physics LT14, M. Krusius and M. Vuorio, eds. (North-Holland, Amsterdam, 1975), Vol. 1, p. 368.

    Google Scholar 

  32. A. I. Ahonen, T. Haavasoja, M. J. Haikala, M. Krusius, and M. A. Paalanen, in Low Temperature Physics LT14 (North-Holland, Amsterdam, 1975), Vol. 5, p. 421; A. I. Ahonen, T. Kodama, M. Krusius, M. A. Paalenen, R. C. Richardson, W. Schoepe, and Y. Takano, J. Phys. C 9, 1665 (1976).

    Google Scholar 

  33. A. I. Ahonen, J. Koppo, O. V. Lauasmaa, M. A. Paalanen, R. C. Richardson, W. Schoepe, and Y. Takano, in Quantum Fluids and Solids, S. B. Trickey, E. D. Adams, and J. W. Dufty, eds. (Plenum Press, New York, 1977), p. 171.

    Google Scholar 

  34. H. Godfrin, G. Frossati, D. Thoulouze, M. Chapellier, and W. G. Clark, J. Phys. (Paris) 39 (Suppl. 8), C6–287 (1978).

    Google Scholar 

  35. R. A. Guyer, Phys. Rev. Lett. 39, 1091 (1977).

    Google Scholar 

  36. D. Spanjaard, D. L. Mills, and M. T. Beal-Monod, J. Phys. (Paris) 39 (Suppl. 8), C6–293 (1978); J. Low Temp. Phys. 34, 307 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mullin, W.J., Landesmant, A. Theory of motional inhibition of interlayer quantum tunneling in thin 3He films. J Low Temp Phys 38, 571–600 (1980). https://doi.org/10.1007/BF00115489

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115489

Keywords

Navigation