Skip to main content
Log in

Genetic and molecular analysis of light-regulated plant development

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Light regulates many physiological and developmental events in plants through the action of multiple sensory pigment systems. Although our understanding of the regulatory photoreceptors, including phytochromes (that principally absorb red and far-red energy) and blue light receptors, has advanced considerably in the recent past, the mechanisms of light signal transduction in higher plants are poorly understood. To unravel the molecular events associated with light-regulated plant development, a large number of photomorphogenic mutants have been isolated in several different plant species, including Arabidopsis, cucumber, tomato, pea, Brassica and Sorghum, which are either impaired in normal perception of light signal (photoreceptor mutants) or are affected in some specific or a sub-set of phenotypic traits (signal transduction mutants). Their physiological and molecular analysis is proving to be valuable in (1) assigning specific function to discrete phytochrome species, (2) elucidation of elements that constitute the transduction pathway downstream of signal perception, and (3) determining how different photosensory systems regulate many diverse responses. The progress made in the analysis of photomorphogenic mutants, as reviewed in this article, clearly indicates that multiple photoreceptors, either of the same or different class, interact through an intricate network of signal transduction pathways to finally determine the light-dependent phenotype of both monocots and dicots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, M. & A.R., Cashmore, 1993. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162–166.

    Google Scholar 

  • Ang, L.-H. & X.-W., Deng, 1994. Regulatory hierarchy of photomorphogenic loci: Allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell 6: 613–628.

    Google Scholar 

  • Bowler, C., G., Neuhaus, H., Yamagata & N.-H., Chua, 1994. Cyclic GMP and calcium mediate photochrome phototransduction. Cell 77: 73–81.

    Google Scholar 

  • Briggs, W.R. & M., Iino, 1983. Blue-light-absorbing photoreceptors in plants. Philos. Trans. R. Soc., Edinburgh 303: 347–359.

    Google Scholar 

  • Cabrera y Poch, H.L., C.A., Peto & J., Chory, 1993. A mutation in the Arabidopsis DET3 gene uncouples photoregulated leaf development from gene expression and chloroplast biogenesis. Plant J. 4: 671–682.

    Google Scholar 

  • Castle, L.A. & D.W., Meinke, 1994. A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell 6: 25–41.

    Google Scholar 

  • Chaudhury, A.M., S., Letham, S., Craig & E.S., Dennis, 1993. ampl — a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J. 4: 907–916.

    Google Scholar 

  • Childs, K.L., M.-M., Cordonnier-Pratt, L.H., Pratt & P.W., Morgan, 1992. Genetic regulation of development in Sorghum bicolor. VII. maR mutant lacks a phytochrome that predominates in green tissue. Plant Physiol. 99: 765–770.

    Google Scholar 

  • Chory, J., 1992. A genetic model for light-regulated seedling development in Arabidopsis. Development 115: 337–354.

    Google Scholar 

  • Chory, J., 1993. Out of darkness: mutants reveal pathways controlling light-regulated development in plants. Trends Genet 9: 167–172.

    Google Scholar 

  • Chory, J., P., Nagpal & C.A., Peto, 1991. Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3: 445–459.

    Google Scholar 

  • Chory, J., C.A., Peto, M., Ashbaugh, R., Saganich, L., Pratt & F., Ausubel, 1989a. Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. Plant Cell 1: 867–880.

    Google Scholar 

  • Chory, J., C., Peto, R., Feinbaum, L.H., Pratt & F., Ausubel, 1989b. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell 58: 991–999.

    Google Scholar 

  • Clack, T., S., Mathews & R.A., Sharrock, 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: The sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25: 413–427.

    Google Scholar 

  • Cosgrove, D., 1985. Kinetic separation of phototropism from blue-light inhibition of stem elongation. Photochem. Photobiol. 42: 745–751.

    Google Scholar 

  • Deng, X.-W., 1994. Fresh view of light signal transduction in plants. Cell 76: 423–426.

    Google Scholar 

  • Deng, X.-W., T., Caspar & P.H., Quail, 1991. COP1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 5: 1172–1182.

    Google Scholar 

  • Deng, X.-W., M., Matsui, N., Wei, D., Wagner, A.M., Chu, K.A., Feldmann & P.H., Quail, 1992. COP1, an Arabidopis regulatory gene, encodes a novel protein with both a Zn-binding motif and a Gβ-protein homologous domain. Cell 71: 791–801.

    Google Scholar 

  • Deng, X.-W., & P.H., Quail, 1992. Genetic and phenotypic characterization of COP1 mutants of Arabidopsis thaliana. Plant J. 2: 83–95.

    Google Scholar 

  • Devlin, P.F., S.B., Rood, D.E., Somers, P.H., Quail & G.C., Whitelam, 1992. Photophysiology of the elongated internode (ein) mutant of Brassica rapa. Plant Physiol. 100: 1442–1447.

    Google Scholar 

  • Foster, K.R., F.R., Miller, K.L., Childs & P.W., Morgan, 1994. Genetic regulation of development in Sorghum biocolor. VIII. Shoot growth, tillering, flowering, gibberellin biosynthesis, and phytochrome levels are differentially affected by dosage of the maRallele. Plant Physiol. 105: 941–948.

    Google Scholar 

  • Frances, S., M.J., White, M.D., Edgerton, A.M., Jones, R.C., Elliott & W.F., Thompson, 1992. Initial characterization of a pea mutant with light-independent photomorphogenesis. Plant Cell 4: 1519–1530.

    Google Scholar 

  • Furuya, M., 1993. Phytochromes: Their molecular species, gene families, and functions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 617–645.

    Google Scholar 

  • Gilmartin, P.M., L., Sarokin, J., Memelink & N.-H., Chua, 1990. Molecular light switches for plant genes. Plant Cell 2: 369–378.

    Google Scholar 

  • Hou, Y., A.G.von, Arnim & X.-W., Deng, 1993. A new class of Arabidopsis constitutive photomorphogenic genes involved in regulating cotyledon development. Plant Cell 5: 329–339.

    Google Scholar 

  • Kaufman, L.S., 1993. Transduction of blue light signals. Plant Physiol. 102: 333–337.

    Google Scholar 

  • Kendrick, R.K. & G.H.M., Kronenberg (eds), 1994. Photomorphogenesis in Plants. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Khurana, J.P., 1992. Blue light photoreceptor(s) and photomorphogenesis in higher plants, pp. 18–35 in Selected Topics of Photobiology edited by V., Jain and H., Goel. Indian Photobiology Society, New Delhi.

    Google Scholar 

  • Khurana, J.P., 1993. Genes directing light-regulated plant development in Arabidopsis. Res. J. Pl. Environ. 9: 35–46.

    Google Scholar 

  • Khurana, J.P., A. Kochhar, M. Nayyar, V.K. Sharma, A.K. Tyagi, S.C. Maheshwari & K.L. Poff, 1993. Arabidopsis mutants in the study of photomorphogenesis, pp. 153–160 in Proceedings of DAE Symposium on Photosynthesis and Plant Molecular Biology.

  • Khurana, J.P. & K.L., Poff, 1989. Mutants of Arabidopsis thaliana with altered phototropism. Planta 178: 400–406.

    Google Scholar 

  • Khurana, J.P., Z., Ren, B., Steinitz, B., Parks, T.R., Best & K.L., Poff, 1989. Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response. Plant Physiol. 91: 685–689.

    Google Scholar 

  • Kochhar, A., P.K. Jain, R.P. Sharma, A.K. Tyagi & J.P. Khurana, 1994. Isolation and characterization of a new class of constitutively photomorphogenic mutants of Arabidopsis. XVI Internat. Cong. Biochem. Mol. Biol., New Delhi, Abst. No. P1-111.

  • Konjevic, R., J.P., Khurana & K.L., Poff, 1992. Analysis of multiple photoreceptor pigments for phototropism in a mutant of Arabidopsis thaliana. Photochem. Photobiol. 55: 789–792.

    Google Scholar 

  • Konjevic, R., B., Steinitz & K.L., Poff, 1989. Dependence of the phototropic response of Arabidopsis thaliana on fluence rate and wavelength. Proc. Natl. Acad. Sci. USA 86: 9876–9880.

    Google Scholar 

  • Koornneef, M., J.W., Cone, R.G., Dekens, E.G.O., O'Herne-Robers, C.J.P., Spruit & R.E., Kendrick, 1985. Photomorphogenic responses of long hypocotyl mutants of tomato. J. Plant Physiol. 120: 153–165.

    Google Scholar 

  • Koornneef, M. & R.E., Kendrick, 1994. Photomorphogenic mutants of higher plants, pp. 601–628 in Photomorphogenesis in Plants edited by R.E., Kendrick and G.H.M., Kronenberg. Kluwer Academic Publishers, Netherlands.

    Google Scholar 

  • Koornneef, M., E., Rolff & C.J.P., Spruit, 1980. Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z. Pflanzenphysiol. 100: 147–160.

    Google Scholar 

  • Liscum, E. & R.P., Hangarter, 1991. Arabidopsis mutants lacking blue light-dependent inhibition of hypocotyl elongation. Plant Cell 3: 685–694.

    Google Scholar 

  • Liscum, E. & R.P., Hangarter, 1994. Mutational analysis of blue-light sensing in Arabidopsis. Plant Cell Environ. 17: 639–648.

    Google Scholar 

  • Liscum, E., J.C., Young, K.L., Poff & R., Hangarter, 1992: Genetic separation of phototropism and blue light inhibition of stem elongation. Plant Physiol. 100: 267–271.

    Google Scholar 

  • Lopez-Juez, E., A., Nagatani, K.-I., Tomizawa, M., Deak, R., Kern, R.E., Kendrick & M., Furuya, 1992. The cucumber long hypocotyl mutant lacks a light-stable PHYB-like phytochrome. Plant Cell 4: 241–251.

    Google Scholar 

  • McNellis, T.W., A.G.von, Arnim, T., Araki, Y., Komeda, S., Misera & X.-W., Deng, 1994. Genetic and molecular analysis of an allelic series of cop 1 mutants suggests functional roles for the multiple protein domains. Plant Cell 6: 487–500.

    Google Scholar 

  • Mehta, M., M.K., Malik, J.P., Khurana & S.C., Maheshwari, 1993. Phytochrome modulation of calcium fluxes in wheat (Triticum aestivum L.) protoplasts. Plant Growth Reg. 12: 293–302.

    Google Scholar 

  • Misera, S., A.J., Muller, U., Weiland-Heidecker & G., Jurgens, 1994. The FUSCA genes of Arabidopsis: negative regulators of light responses. Mol. Gen. Genet. 244: 242–252.

    Google Scholar 

  • Nagatani, A., J., Chory & M., Furuya, 1991. Phytochrome B is not detectable in the hy3 mutant of Arabidopsis, which is deficient in responding to end-of-day far-red light treatments. Plant Cell Physiol. 32: 1119–1122.

    Google Scholar 

  • Nagatani, A., J.W., Reed & J., Chory, 1993. Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiol. 102: 269–277.

    Google Scholar 

  • Neff, M.M. & E.V., Volkenburgh, 1994. Light-stimulated cotyledon expansion in Arabidopsis seedlings: The role of phytochrome B. Plant Physiol. 104: 1027–1032.

    Google Scholar 

  • Neuhaus, G., C., Bowler, R., Kern & N.-H., Chua, 1993. Calcium/calmodulin-dependent and-independent phytochrome signal transduction pathways. Cell 73: 937–952.

    Google Scholar 

  • Okada, K. & Y., Shimura, 1992a. Aspects of recent developments in mutational studies of plant signalling pathways. Cell 70: 369–372.

    Google Scholar 

  • Okada, K. & Y., Shimura, 1992b. Mutational analysis of root gravitropism and phototropism of Arabidopsis thaliana seedlings. Aust. J. Plant Physiol. 19: 439–448.

    Google Scholar 

  • Parks, B.M., A.M., Jones, M., Koornneef, R.E., Kendrick & P.H., Quail, 1987. The surea mutant of tomato is deficient in spectrophotometrically and immunochemically detectable phytochrome. Plant Mol. Biol. 9: 97–107.

    Google Scholar 

  • Parks, B.M. & P.H., Quail, 1991. Phytochrome-deficient hy1 and hy2 long hypocotyl mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis. Plant Cell 3: 1177–1186.

    Google Scholar 

  • Parks, B.M. & P.H., Quail, 1993. hy2, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5: 39–48.

    Google Scholar 

  • Parks, B.M., J., Shanklin, M., Koornneef, R.E., Kendrick & P.H., Quail, 1989. immunochemically detectable phytochrome is present at normal levels but is photochemically nonfunctional in the hy1 and hy2 long hypocotyl mutants of Arabidopsis. Plant Mol. Biol. 12: 425–437.

    Google Scholar 

  • Pepper, A., T., Delaney, T., Washburn, D., Poole & J., Chory, 1994. DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encodes a novel nuclear-localized protein. Cell 78: 109–116.

    Google Scholar 

  • Peters, J.L., M.E.L., Schreuder, S.J.W., Verduin & R.E., Kendrick, 1992. Physiological characterization of a high pigment mutant of tomato. Photochem. Photobiol. 56: 75–82.

    Google Scholar 

  • Peters, J.L., A.van, Tuinen, P., Adamse, R.E., Kendrick & M., Koornneef, 1989. High pigment mutants of tomato exhibit high sensitivity for phytochrome action. J. Plant Physiol. 134: 661–666.

    Google Scholar 

  • Peters, J.L., J.C., Wesselium, K.C., Georghious, R.E., Kendrick, A.van, Tuinen & M., Koornneef, 1991. The physiology of photomorphogenic tomato mutants, pp. 237–247 in Phytochrome Properties and Biological Action, edited by B., Thomas and C.B., Johnson. Springer-Verlag, Berlin.

    Google Scholar 

  • Poff, K.L., R., Konjevic, J.P., Khurana & A.K., Janoudi, 1993. Development of a genetic system for the study of phototropism in Arabidopsis thaliana, pp. 171–180 in Recent Advances in Life Sciences. Kyungpook National University, Taegu, Korea.

    Google Scholar 

  • Quinones, M.A. & E., Zeiger, 1994. A putative role of the xanthophyll, zeaxanthin, in blue light photoreception of corn coleoptiles. Science 264: 558–561.

    Google Scholar 

  • Quail, P.H. 1991. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu. Rev. Genet. 25: 389–409.

    Google Scholar 

  • Reed, J.W., P., Nagpal, D.S., Poole, M., Furuya & J., Chory, 1993. Mutations in the gene for red/far-red receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5: 147–157.

    Google Scholar 

  • Reymond, P., T.W., Short & W.R., Briggs, 1992a. Blue light activates a specific protein kinase in higher plants. Plant Physiol. 100: 655–661.

    Google Scholar 

  • Reymond, P., T.W., Short, W.R., Briggs & K.L., Poff, 1992b. Light-induced phosphorylation of a membrane protein plays an early role in signal transduction for phototropism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 89: 4718–4721.

    Google Scholar 

  • Rich, T.C.G., G.C., Whitelam & H., Smith, 1985. Phototropism and axis extension in light-grown mustard (Sinapis alba L.) seedlings. Photochem. Photobiol. 42: 789–792.

    Google Scholar 

  • Robson, P.R.H., G.C., Whitelam & H., Smith, 1993. Selected components of the shade-avoidance syndrome are displayed in a normal manner in mutants of Arabidopsis thaliana and Brassica rapa deficient in phytochrome B. Plant Physiol. 102: 1179–1184.

    Google Scholar 

  • Romero, L.C., D., Sommer, C., Gotor & P.-S., Song, 1991. G-proteins in etiolated Avena seedlings; possible phytochrome regulation. FEBS Lett. 282: 341–346.

    Google Scholar 

  • Sharma, R., E., Lopez-Juez, A., Nagatani & M., Furuya, 1993. Identification of photo-inactive phytochrome A in etiolated seedlings and photo-active phytochrome B in green leaves of the aurea mutant of tomato. Plant J. 4: 1035–1042.

    Google Scholar 

  • Sharrock, R.A. & P.H., Quail, 1989. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution and differential expression of a plant regulatory photoreceptor family. Genes Dev. 3: 1745–1757.

    Google Scholar 

  • Shinomura, T., A., Nagatani, J., Chory & M., Furuya, 1994. The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol. 104: 363–371.

    Google Scholar 

  • Short, T.W. & W.R., Briggs, 1994: The transduction of blue light signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 143–171.

    Google Scholar 

  • Somers, D.E., R.A., Sharrock, J.M., Teperman & P.H., Quail, 1991. The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B. Plant Cell 3: 1263–1274.

    Google Scholar 

  • Stapleton, A.E., 1992. Ultraviolet radiation and plants: burning questions. Plant Cell 4: 1353–1358.

    Google Scholar 

  • Tretyn, A., G., Kendrick & H., Smith, 1991. The role(s) of calcium ions in phytochrome action. Photochem. Photobiol. 54: 1135–1155.

    Google Scholar 

  • Vierstra, R.D., 1993. Illuminating phytochrome functions: There is light at the end of the tunnel. Plant Physiol. 103: 679–684.

    Google Scholar 

  • Warpeha, K.M.F., H.E., Hamm, M.M., Rasenick & L.S., Kaufman, 1991. A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas. Proc. Natl. Acad. Sci. USA 88: 8925–8929.

    Google Scholar 

  • Wei, N., D.A., Chamovitz & X.-W., Deng, 1994a. Arabidopsis COP9 is a component of a novel signalling complex mediating light control of development. Cell 78: 117–124.

    Google Scholar 

  • Wei, N. & X.-W., Deng, 1992. COP9: a new genetic locus involved in light-regulated development and gene expression in Arabidopsis. Plant Cell 4: 1507–1518.

    Google Scholar 

  • Wei, N., S.F., Kwok, A.G.von, Arnim, A., Lee, T.W., McNellis, B., Piekos & X.-W., Deng, 1994b. Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell 6: 629–643.

    Google Scholar 

  • Weller, J.L. & J.B., Reid, 1993. Photoperiodism and photocontrol of stem elongation in two photomorphogenic mutants of Pisum sativum L. Planta 189: 15–23.

    Google Scholar 

  • Whitelam, G.C. & N.P., Harberd, 1994. Action and function of phytochrome family members revealed through the study of mutant and transgenic plants. Plant Cell Environ. 17: 615–625.

    Google Scholar 

  • Whitelam, G.C., E., Johnson, J., Peng, P., Carol, M.L., Anderson, J.S., Cowl & N.P., Harberd, 1993. Phytochrome A null mutant of Arabidopsis displays a wild-type phenotype in white light. Plant Cell 5: 757–768.

    Google Scholar 

  • Whitelam, G.C. & H., Smith, 1991. Retention of phytochrome-mediated shade avoidance responses in phytochrome-deficient mutants of Arabidopsis, cucumber and tomato. J. Plant Physiol. 139: 119–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khurana, J.P., Kochhar, A. & Jain, P.K. Genetic and molecular analysis of light-regulated plant development. Genetica 97, 349–361 (1996). https://doi.org/10.1007/BF00055321

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00055321

Key words

Navigation