Skip to main content
Log in

Phytohormone-regulated β-amylase gene expression in rice

  • Mini-review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The expression of β-amylase genes in rice (Oryza sativa) and its regulation by phytohormones gibberellic acid (GA) and abscisic acid (ABA) were examined. Upon germination β-amylase is synthesizedde novo in aleurone cells and (GA) is not required. Exogenous addition of GA does not enhance the β-amylase activity, while ABA inhibits the β-amylase activity, mRNA accumulation, and the germination of rice seeds. GA can reverse ABA inhibition of β-amylase expression, but not ABA inhibition of seed germination. Such regulation represents a new interaction of ABA and GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson DJ, Blobel G: Immunoprecipitation of proteins from cell-free translation. Meth Enzymol 96: 111–120 (1983).

    PubMed  Google Scholar 

  2. Beck E, Ziegler P: Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40: 95–117 (1989).

    Article  Google Scholar 

  3. Callis J, Ho T-HD: Multiple molecular forms of the gibberellin-induced α-amylase from the aleurone layers of barley seeds. Arch Biochem Biophys 224: 224–234 (1983).

    PubMed  Google Scholar 

  4. Daussant J, Corvazier P: Biosynthesis and modification of α-and β-amylases in germinating wheat seeds. FEBS Lett 7: 191–194 (1970).

    Article  PubMed  Google Scholar 

  5. Daussant J, Lauriere C: Detection and partial characterization of two antigenically distinct β-amylases in developing kernels of wheat. Planta 181: 505–511 (1990).

    Google Scholar 

  6. Gubler F, Jacobsen JV: Gibberellin-responsive elements in the promoter of a barley high-pI α-amylase gene. Plant Cell 4: 1435–1441 (1992).

    Article  PubMed  Google Scholar 

  7. Hara-Nishimura I, Nishimura M, Daussant J: Conversion of free β-amylase to bound β-amylase on starch granules in the barley endosperm during desiccation phase of seed development. Protoplasma 134: 149–153 (1986).

    Google Scholar 

  8. Hardie DG: Control of carbohydrate formation gibberellic acid in barley endosperm. Phytochemistry 14: 1719–1722 (1975).

    Article  Google Scholar 

  9. Hejgaard J: Free and protein-bound β-amylases of barley grain. Characterization by two-dimensional immunoelectorphoresis. Physiol Plant 38: 293–299 (1976).

    Google Scholar 

  10. Higgins TJV, Jacobsen JV, and Zwar JA: Gibberellic acid an abscisic acid modulate protein synthesis and mRNA levels in barley aleurone layers. Plant Mol Biol 1: 191–215 (1982).

    Google Scholar 

  11. Huttly AK, Phillips AL, Tregear JW: Localisation of cis elements in the promoter of a wheat α-Amy2 gene. Plant Mol Biol 19: 903–911 (1992).

    Google Scholar 

  12. Karrer EE, Litts JC, Rodrigues RL: Differential expression of α-amylase genes in germinating rice and barley seeds. Plant Mol Biol 16: 797–805 (1991).

    Google Scholar 

  13. Kim J-K, Cao J, Wu R: Regulation and interaction of multiple protein factors with the proximal promoter regions of a rice high pI α-amylase gene. Mol Gen Genet 232: 383–393 (1992).

    PubMed  Google Scholar 

  14. Kreis M, Williamson MS, Buxton B, Pywell J, Hejgaard J, Svendsen I: Primary structure and differential expression of β-amylase in normal and mutant barley. Eur J Biochem 169: 517–525 (1987).

    PubMed  Google Scholar 

  15. Lanahan MB, Ho T-HD, Rogers SW, Rogers JC: A gibberellin response complex in cereal α-amylase gene promoters. Plant Cell 4: 203–211 (1992).

    Article  PubMed  Google Scholar 

  16. Lauriere C, Doyen C, Thevenot C, Daussant J: β-Amylase in cereals: a study of the maize β-amylase system. Plant Physiol 100: 887–893 (1992).

    Google Scholar 

  17. Lin LS, Ho T-HD: Mode of action of abscisic acid in barley aleurone layers induction of new proteins by abscisic acid. Plant Physiol 82: 289–297 (1986).

    Google Scholar 

  18. Mathewson PR, Seabourn BW: A new procedure for specific determination of β-amylase in cereals. J Agric Food Chem 31: 1322–1326 (1983).

    Google Scholar 

  19. Monroe JD, Preiss J: Nucleotide sequence of a cDNA encoding a beta-amylase fromArabidopsis thaliana. Plant Physiol 97: 1599–1601 (1991).

    Google Scholar 

  20. Mundy J, Brandt A, Fincher GB: Messenger RNAs from the scutellum and aleurone of germinating barley encode (1→3, 1→4)-β-D-glucanase, α-amylase and carboxypeptidase. Plant Physiol 79: 867–871 (1985).

    Google Scholar 

  21. Nolan RC, Ho T-HD: Hormonal regulation of gene expression in barley aleurone layers. Planta 174: 551–560 (1988).

    Google Scholar 

  22. Okamoto K, Akazawa T: Enzymic mechanisms of starch break-down in germinating rice seeds. 7. Amylase formation in the epithelium. Plant Physiol 63: 336–340 (1979).

    Google Scholar 

  23. Okamoto K, Akazawa I: Enzymic mechanism of starch break-down in germinating rice seeds. 9. De novo synthesis of β-amylase. Plant Physiol 65: 81–84 (1980).

    Google Scholar 

  24. Robertson M, Walker-Simmons M, Munro D, Hill RD: Induction of α-amylase inhibitor synthesis in barley embryos and young seedlings by abscisic acid and dehydration stress. Plant Physiol 91: 415–420 (1989).

    Google Scholar 

  25. Rogers JC: Two barley α-amylase gene families are regulated differently in aleurone cells. J Biol Chem 260: 3731–3738 (1985).

    PubMed  Google Scholar 

  26. Rorat T, Sadowski J, Grellet F, Daussant J, Delsny M: Characterization of cDNA clones for rye endosperm-specific β-amylase and analysis of β-amylase deficiency in rye mutant lines. Theor Appl Genet 83: 257–263 (1991).

    Article  Google Scholar 

  27. Sadowski J, Rorat T, Cooke R, Delsny M: Nucleotide sequence of a cDNA clone encoding ubiquitous β-amylase in rye (Secale cereale L.) Plant Physiol 102: 315–316 (1993).

    Article  PubMed  Google Scholar 

  28. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory. Cold Spring Harbor, NY (1989).

    Google Scholar 

  29. Schelle G: Methods for study of protein translocation across the RER membrane using the reticulocyte lysate translation system and canine pancreatic microsomal membranes Meth Enzymol 96: 94–111 (1983).

    PubMed  Google Scholar 

  30. Shewry PR, Parmar S, Buxton B, Gale MD, Liu CJ, Hejgaard J, Kreis M: Multiple molecular forms of β-amylase in seeds and vegetative tissue of barley. Plant 176: 127–134 (1988).

    Google Scholar 

  31. Wang S-M, Wu S-Y, Chen J: Purification and characterization of β-amylase in maize kernel. Bot Bull Acad Sin 33: 359–369 (1992).

    Google Scholar 

  32. Yoshida N, Nakamura K: Molecular cloning and expression inEscherichia coli of cDNA encoding the subunit of sweet potato beta-amylase. J Biochem 110: 196–201 (1991).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SM., Lue, WL., Eimert, K. et al. Phytohormone-regulated β-amylase gene expression in rice. Plant Mol Biol 31, 975–982 (1996). https://doi.org/10.1007/BF00040716

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00040716

Key words

Navigation