Skip to main content

ABA Biosynthetic and Catabolic Pathways

  • Chapter
  • First Online:
Abscisic Acid: Metabolism, Transport and Signaling

Abstract

Abscisic acid (ABA) is a phytohormone that regulates physiological processes such as seed maturation, seed dormancy, and stress adaptation. These physiological responses are triggered by the fluctuation of endogenous ABA levels in accordance with changing surroundings or developmental stimuli. Endogenous ABA levels are largely controlled by the balance between biosynthesis and catabolism. ABA is also synthesized in various kinds of organisms other than plants. To manipulate ABA levels, we first need to understand the pathways for ABA biosynthesis and catabolism in each organism. The biosynthetic pathway has been extensively studied in plants and phytopathogenic fungi. The catabolic pathway has been mostly established in plants. Extensive investigations of mutants defective in ABA metabolism using biochemical, molecular genetic, and genomic approaches have helped to reveal the main framework of these pathways. This chapter reviews our current understanding of the pathways of ABA biosynthesis and catabolism. In addition, inhibitors of ABA biosynthesis and catabolism are introduced. These inhibitors can be used to manipulate endogenous ABA levels and are useful tools to investigate ABA action in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addicott FT, Lyon JL, Ohkuma K, Thiessen WE, Carns HR, Smith OE, Cornforth JW, Milborrow BV, Ryback G, Wareing PF. Abscisic acid: a new name for abscisin II (dormin). Science. 1968;159:1493.

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Yamazaki M, Kobayashi M, Hirochika R, Miyao A, Hirochika H. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene. Plant Physiol. 2001;125:1248–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Babili S, Hugueney P, Schledz M, Welsch R, Frohnmeyer H, Laule O, Beyer P. Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum. FEBS Lett. 2000;485:168–72.

    Article  PubMed  CAS  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science. 2012;335:1348–51.

    Article  PubMed  CAS  Google Scholar 

  • Araki Y, Miyawaki A, Miyashita T, Mizutani M, Hirai N, Todoroki Y. A new non-azole inhibitor of ABA 8′-hydroxylase: effect of the hydroxyl group substituted for geminal methyl groups in the six-membered ring. Bioorg Med Chem Lett. 2006;16:3302–5.

    Article  PubMed  CAS  Google Scholar 

  • Bittner F, Oreb M, Mendel RR. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem. 2001;276:40381–4.

    Article  PubMed  CAS  Google Scholar 

  • Bouvier F, d’Harlingue A, Hugueney P, Marin E, Marion-Poll A, Camara B. Xanthophyll biosynthesis. Cloning, expression, functional reconstitution, and regulation of beta-cyclohexenyl carotenoid epoxidase from pepper (Capsicum annuum). J Biol Chem. 1996;271:28861–7.

    Article  PubMed  CAS  Google Scholar 

  • Bouvier F, D’Harlingue A, Backhaus RA, Kumagai MH, Camara B. Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur J Biochem. 2000;267:6346–52.

    Article  PubMed  CAS  Google Scholar 

  • Boyd J, Gai Y, Nelson KM, Lukiwski E, Talbot J, Loewen MK, Owen S, Zaharia LI, Cutler AJ, Abrams SR, Loewen MC. Sesquiterpene-like inhibitors of a 9-cis-epoxycarotenoid dioxygenase regulating abscisic acid biosynthesis in higher plants. Bioorg Med Chem. 2009;17:2902–12.

    Article  PubMed  CAS  Google Scholar 

  • Burbidge A, Grieve TM, Jackson A, Thompson A, McCarty DR, Taylor IB. Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize Vp14. Plant J. 1999;17:427–31.

    Article  PubMed  CAS  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell. 2002;14:2723–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chernys JT, Zeevaart JA. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol. 2000;124:343–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chono M, Honda I, Shinoda S, Kushiro T, Kamiya Y, Nambara E, Kawakami N, Kaneko S, Watanabe Y. Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting. J Exp Bot. 2006;57:2421–34.

    Article  PubMed  CAS  Google Scholar 

  • Cowan AK. Is abscisic aldehyde really the immediate precursor to stress-induced ABA? Trends Plant Sci. 2000;5:191–2.

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Bell E, Mullet JE. Involvement of a lipoxygenase-like enzyme in abscisic acid biosynthesis. Plant Physiol. 1992;99:1258–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cutler AJ, Krochko JE. Formation and breakdown of ABA. Trends Plant Sci. 1999;4:472–8.

    Article  PubMed  Google Scholar 

  • Cutler AJ, Rose PA, Squires TM, Loewen MK, Shaw AC, Quail JW, Krochko JE, Abrams SR. Inhibitors of abscisic acid 8′-hydroxylase. Biochemistry-Us. 2000;39:13614–24.

    Article  CAS  Google Scholar 

  • Duckham SC, Linforth RST, Taylor IB. Abscisic-acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant, Cell Environ. 1991;14:601–6.

    Article  CAS  Google Scholar 

  • Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M, Kamiya Y, Koshiba T, Nambara E. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 2008;147:1984–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Estevez JM, Cantero A, Reindl A, Reichler S, Leon P. 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem. 2001;276:22901–9.

    Article  PubMed  CAS  Google Scholar 

  • Firn RD, Friend J. Enzymatic production of the plant growth inhibitor, xanthoxin. Planta. 1972;103:263–6.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher RA, Hofstra G, Gao JG. Comparative fungitoxic and plant-growth regulating properties of triazole derivatives. Plant and Cell Physiol. 1986;27:367–71.

    CAS  Google Scholar 

  • Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J. Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J. 2008;53:717–30.

    Article  PubMed  CAS  Google Scholar 

  • Gamble PE, Mullet JE. Inhibition of carotenoid accumulation and abscisic-acid biosynthesis in fluridone-treated dark-grown barley. Eur J Biochem. 1986;160:117–21.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Guzman M, Apostolova N, Belles JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodriguez PL. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell. 2002;14:1833–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hampson CR, Reaney MJT, Abrams GD, Abrams SR, Gusta LV. Metabolism of (+)-abscisic acid to (+)-7′-hydroxyabscisic acid by bromegrass cell-cultures. Phytochemistry. 1992;31:2645–8.

    Article  CAS  Google Scholar 

  • Han SY, Kitahata N, Sekimata K, Saito T, Kobayashi M, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K, Yoshida S, Asami T. A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiol. 2004;135:1574–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanada K, Hase T, Toyoda T, Shinozaki K, Okamoto M. Origin and evolution of genes related to ABA metabolism and its signaling pathways. J Plant Res. 2011;124:455–65.

    Article  PubMed  CAS  Google Scholar 

  • Harrison E, Burbidge A, Okyere JP, Thompson AJ, Taylor IB. Identification of the tomato ABA-deficient mutant sitiens as a member of the ABA-aldehyde oxidase gene family using genetic and genomic analysis. Plant Growth Regul. 2011;64:301–9.

    Google Scholar 

  • Hartung W, Sauter A, Hose E. Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot. 2002;53:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Hill RD, Liu JH, Durnin D, Lamb N, Shaw A, Abrams SR. Abscisic acid structure-activity relationships in barley aleurone layers and protoplasts (biological activity of optically active, oxygenated abscisic acid analogs). Plant Physiol. 1995;108:573–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hirai N, Okamoto M, Koshimizu K. The 1’,4’-trans-diol of abscisic-acid, a possible precursor of abscisic-acid in botrytis-cinerea. Phytochemistry. 1986;25:1865–8.

    Article  CAS  Google Scholar 

  • Hirai N, Yoshida R, Todoroki Y, Ohigashi H. Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Biosci Biotechnol Biochem. 2000;64:1448–58.

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg J. Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol. 2001;4:210–8.

    Article  PubMed  CAS  Google Scholar 

  • Huang DQ, Jaradat MR, Wu WR, Ambrose SJ, Ross AR, Abrams SR, Cutler AJ. Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis. Plant J. 2007;50:414–28.

    Article  PubMed  CAS  Google Scholar 

  • Hwang SG, Lin NC, Hsiao YY, Kuo CH, Chang PF, Deng WL, Chiang MH, Shen HL, Chen CY, Cheng WH. The Arabidopsis short-chain dehydrogenase/reductase 3, an abscisic acid deficient 2 homolog, is involved in plant defense responses but not in ABA biosynthesis. Plant Physiol Biochem. 2012;51:63–73.

    Article  PubMed  CAS  Google Scholar 

  • Inomata M, Hirai N, Yoshida R, Ohigashi H. Biosynthesis of abscisic acid by the direct pathway via ionylideneethane in a fungus, Cercospora cruenta. Biosci Biotechnol Biochem. 2004a;68:2571–80.

    Article  PubMed  CAS  Google Scholar 

  • Inomata M, Hirai N, Yoshida R, Ohigashi H. The biosynthetic pathway to abscisic acid via ionylideneethane in the fungus Botrytis cinerea. Phytochemistry. 2004b;65:2667–78.

    Article  PubMed  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol. 2000;123:553–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 2001;27:325–33.

    Article  PubMed  CAS  Google Scholar 

  • Izumi K, Kamiya Y, Sakurai A, Oshio H, Takahashi N. Studies of sites of action of a new plant-growth retardant (E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-Yl)-1-penten-3-Ol (S-3307) and comparative effects of its stereoisomers in a cell-free system from cucurbita-maxima. Plant and Cell Physiol. 1985;26:821–7.

    CAS  Google Scholar 

  • Jiang F, Hartung W. Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot. 2008;59:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, Kamiya Y, Seo M. Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant and Cell Physiol. 2010;51:1988–2001.

    Article  CAS  Google Scholar 

  • Kepka M, Benson CL, Gonugunta VK, Nelson KM, Christmann A, Grill E, Abrams SR. Action of natural abscisic acid precursors and catabolites on abscisic acid receptor complexes. Plant Physiol. 2011;157:2108–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitahata N, Saito S, Miyazawa Y, Umezawa T, Shimada Y, Min YK, Mizutani M, Hirai N, Shinozaki K, Yoshida S, Asami T. Chemical regulation of abscisic acid catabolism in plants by cytochrome P450 inhibitors. Bioorgan Med Chem. 2005;13:4491–8.

    Article  CAS  Google Scholar 

  • Kitahata N, Han SY, Noji N, Saito T, Kobayashi M, Nakano T, Kuchitsu K, Shinozaki K, Yoshida S, Matsumoto S, Tsujimoto M, Asami T. A 9-cis-epoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorg Med Chem. 2006;14:5555–61.

    Article  PubMed  CAS  Google Scholar 

  • Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ. (+)-abscisic acid 8′-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol. 1998;118:849–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J. 2004;23:1647–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laby RJ, Kincaid MS, Kim D, Gibson SI. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J. 2000;23:587–96.

    Article  PubMed  CAS  Google Scholar 

  • Lee HS, Milborrow BV. Endogenous biosynthetic precursors of (+)-abscisic acid. V. Inhibition by tungstate and its removal by cinchonine shows that xanthoxal is oxidised by a molybdo-aldehyde oxidase. Aust J Plant Physiol. 1997;24:727–32.

    Article  CAS  Google Scholar 

  • Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee IJ, Hwang I. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell. 2006;126:1109–20.

    Article  PubMed  CAS  Google Scholar 

  • LeonKloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JAD, Koornneef M. Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J. 1996;10:655–61.

    Article  CAS  Google Scholar 

  • Leydecker MT, Moureaux T, Kraepiel Y, Schnorr K, Caboche M. Molybdenum cofactor mutants, specifically impaired in xanthine dehydrogenase activity and abscisic acid biosynthesis, simultaneously overexpress nitrate reductase. Plant Physiol. 1995;107:1427–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Wakao S, Fischer BB, Niyogi KK. Sensing and responding to excess light. Annu Rev Plant Biol. 2009;60:239–60.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler HK. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Phys. 1999;50:47–65.

    Article  CAS  Google Scholar 

  • Lim EK, Doucet CJ, Hou B, Jackson RG, Abrams SR, Bowles DJ. Resolution of (+)-abscisic acid using an Arabidopsis glycosyltransferase. Tetrahedron-Asymmetr. 2005;16:143–7.

    Article  CAS  Google Scholar 

  • Marin E, Nussaume L, Quesada A, Gonneau M, Sotta B, Hugueney AF, Marion-Poll A. Molecular identification of zeaxanthin epoxidase of nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 1996;15:2331–42.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mendel RR, Hänsch R. Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot. 2002;53:1689–98.

    Article  PubMed  CAS  Google Scholar 

  • Merlot S, Mustilli AC, Genty B, North H, Lefebvre V, Sotta B, Vavasseur A, Giraudat J. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 2002;30:601–9.

    Article  PubMed  CAS  Google Scholar 

  • Messing SA, Gabelli SB, Echeverria I, Vogel JT, Guan JC, Tan BC, Klee HJ, McCarty DR, Amzel LM. Structural insights into maize viviparous14, a key enzyme in the biosynthesis of the phytohormone abscisic acid. Plant Cell. 2010;22:2970–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, Reid JB, Gubler F. Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant J. 2006;45:942–54.

    Article  PubMed  CAS  Google Scholar 

  • Min XJ, Okada K, Brockmann B, Koshiba T, Kamiya Y. Molecular cloning and expression patterns of three putative functional aldehyde oxidase genes and isolation of two aldehyde oxidase pseudogenes in tomato. Biochim Biophys Acta. 2000;1493:337–41.

    Article  PubMed  CAS  Google Scholar 

  • Moore R, Smith JD. Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of zea-mays-l. Planta. 1985;164:126–8.

    Article  CAS  Google Scholar 

  • Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005;56:165–85.

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Kawaide H, Kamiya Y, Naito S. Characterization of an Arabidopsis thaliana mutant that has a defect in ABA accumulation: ABA-dependent and ABA-independent accumulation of free amino acids during dehydration. Plant and Cell Physiol. 1998;39:853–8.

    Article  CAS  Google Scholar 

  • Neill SJ, Horgan R. Biosynthesis of Aba in C-Rosicola. 2. Incorporation of alpha-ionylidene ethanol and alpha-ionylidene acetic-acid into abscisic-acid by cercospora-rosicola. Phytochemistry. 1983;22:2469–72.

    Article  CAS  Google Scholar 

  • Neill SJ, Horgan R, Walton DC, Lee TS. The biosynthesis of abscisic-acid in cercospora-rosicola. Phytochemistry. 1982;21:61–5.

    Article  CAS  Google Scholar 

  • Neill SJ, Horgan R, Parry AD. The carotenoid and abscisic-acid content of viviparous kernels and seedlings of zea-mays-l. Planta. 1986;169:87–96.

    Article  PubMed  CAS  Google Scholar 

  • Neuman H, Galpaz N, Cunningham FX Jr, Zamir D, Hirschberg J. The tomato mutation nxd1 reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. Plant J. 2014;78:80–93.

    Article  PubMed  CAS  Google Scholar 

  • Newman JD, Chappell J. Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol. 1999;34:95–106.

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK, Grossman AR, Bjorkman O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell. 1998;10:1121–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Norman SM, Bennett RD, Maier VP, Poling SM. Cytokinins inhibit abscisic-acid biosynthesis in cercospora-rosicola. Plant Sci Lett. 1983;28:255–63.

    Article  CAS  Google Scholar 

  • Norman SM, Bennett RD, Poling SM, Maier VP, Nelson MD. Paclobutrazol inhibits abscisic acid biosynthesis in cercospora rosicola. Plant Physiol. 1986;80:122–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • North HM, De Almeida A, Boutin JP, Frey A, To A, Botran L, Sotta B, Marion-Poll A. The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J. 2007;50:810–24.

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma K, Addicott FT, Smith OE, Thiessen WE. The structure of abscisin II. Tetrahedron Lett. 1965;6:2529–35.

    Article  Google Scholar 

  • Okamoto M, Hirai N, Koshimizu K. Biosynthesis of abscisic-acid from alpha-ionylideneethanol in cercospora-pini-densiflorae. Phytochemistry. 1988;27:3465–9.

    Article  CAS  Google Scholar 

  • Okamoto M, Min X, Seo M, Nakabayashi K, Kamiya Y, Nambara E, Koshiba T. Complementation of a tomato ABA-deficient sitiens mutant by an Arabidopsis aldehyde oxidase gene, AAO3. Plant and Cell Physiol. 2002;43:S42–S42.

    Article  Google Scholar 

  • Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol. 2006;141:97–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamoto M, Tatematsu K, Matsui A, Morosawa T, Ishida J, Tanaka M, Endo TA, Mochizuki Y, Toyoda T, Kamiya Y, Shinozaki K, Nambara E, Seki M. Genome-wide analysis of endogenous abscisic acid-mediated transcription in dry and imbibed seeds of Arabidopsis using tiling arrays. Plant J. 2010;62:39–51.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto M, Kushiro T, Jikumaru Y, Abrams SR, Kamiya Y, Seki M, Nambara E. ABA 9’-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry. 2011;72:717–22.

    Article  PubMed  CAS  Google Scholar 

  • Okazaki M, Kittikorn M, Ueno K, Mizutani M, Hirai N, Kondo S, Ohnishi T, Todoroki Y. Abscinazole-E2B, a practical and selective inhibitor of ABA 8′-hydroxylase CYP707A. Bioorgan Med Chem. 2012;20:3162–72.

    Article  CAS  Google Scholar 

  • Oritani T, Kiyota H. Biosynthesis and metabolism of abscisic acid and related compounds. Nat Prod Rep. 2003;20:414–25.

    Article  PubMed  CAS  Google Scholar 

  • Oritani T, Niitsu M, Kato T, Yamashita K. Isolation of (2z,4e)-gamma-ionylideneethanol from cercospora-cruenta, a fungus producing (+)-abscisic acid. Agr Biol Chem Tokyo. 1985;49:2819–22.

    Article  CAS  Google Scholar 

  • Parry AD, Horgan R. Carotenoids and Abscisic-Acid (Aba) biosynthesis in higher-plants. Physiol Plantarum. 1991;82:320–6.

    Article  CAS  Google Scholar 

  • Parry AD, Blonstein AD, Babiano MJ, King PJ, Horgan R. Abscisic-acid metabolism in a wilty mutant of nicotiana plumbaginifolia. Planta. 1991;183:237–43.

    Article  PubMed  CAS  Google Scholar 

  • Priest DM, Ambrose SJ, Vaistij FE, Elias L, Higgins GS, Ross ARS, Abrams SR, Bowles DJ. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J. 2006;46:492–502.

    Article  PubMed  CAS  Google Scholar 

  • Qin X, Zeevaart JA. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci USA. 1999;96:15354–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin X, Yang SH, Kepsel AC, Schwartz SH, Zeevaart JA. Evidence for abscisic acid biosynthesis in Cuscuta reflexa, a parasitic plant lacking neoxanthin. Plant Physiol. 2008;147:816–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rademacher W. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Phys. 2000;51:501–31.

    Article  CAS  Google Scholar 

  • Rock CD, Zeevaart JA. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA. 1991;88:7496–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rock CD, Heath TG, Gage DA, Zeevaart JA. Abscisic alcohol is an intermediate in abscisic acid biosynthesis in a shunt pathway from abscisic aldehyde. Plant Physiol. 1991;97:670–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J. An alternative pathway to beta-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA. 2000;97:11102–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J. 2001;26:421–33.

    Article  PubMed  CAS  Google Scholar 

  • Rousselin P, Kraepiel Y, Maldiney R, Miginiac E, Caboche M. Characterization of 3 hormone mutants of Nicotiana plumbaginifolia—evidence for a common Aba deficiency. Theor Appl Genet. 1992;85:213–21.

    PubMed  CAS  Google Scholar 

  • Sagi M, Fluhr R, Lips SH. Aldehyde oxidase and xanthine dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol. 1999;120:571–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sagi M, Scazzocchio C, Fluhr R. The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. Plant J. 2002;31:305–17.

    Article  PubMed  CAS  Google Scholar 

  • Saika H, Okamoto M, Miyoshi K, Kushiro T, Shinoda S, Jikumaru Y, Fujimoto M, Arikawa T, Takahashi H, Ando M, Arimura S, Miyao A, Hirochika H, Kamiya Y, Tsutsumi N, Nambara E, Nakazono M. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant and Cell Physiol. 2007;48:287–98.

    Article  CAS  Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 2004;134:1439–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saito S, Okamoto M, Shinoda S, Kushiro T, Koshiba T, Kamiya Y, Hirai N, Todoroki Y, Sakata K, Nambara E, Mizutani M. A plant growth retardant, uniconazole, is a potent inhibitor of ABA catabolism in Arabidopsis. Biosci Biotech Bioch. 2006;70:1731–9.

    Article  CAS  Google Scholar 

  • Sauter A, Dietz KJ, Hartung W. A possible stress physiological role of abscisic acid conjugates in root-to-shoot signalling. Plant, Cell Environ. 2002;25:223–8.

    Article  CAS  Google Scholar 

  • Sawada Y, Aoki M, Nakaminami K, Mitsuhashi W, Tatematsu K, Kushiro T, Koshiba T, Kamiya Y, Inoue Y, Nambara E, Toyomasu T. Phytochrome- and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic lettuce seeds. Plant Physiol. 2008;146:1386–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz SH, Zeevaart JAD. Abscisic acid biosynthesis and metabolism. In: Davies PJ, editor. Plant hormones. 3rd ed. New York: Springer; 2010. p. 137–55.

    Chapter  Google Scholar 

  • Schwartz SH, Leon-Kloosterziel KM, Koornneef M, Zeevaart JA. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol. 1997a;114:161–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR. Specific oxidative cleavage of carotenoids by VP14 of maize. Science. 1997b;276:1872–4.

    Article  PubMed  CAS  Google Scholar 

  • Sekimoto H, Seo M, Kawakami N, Komano T, Desloire S, Liotenberg S, Marion-Poll A, Caboche M, Kamiya Y, Koshiba T. Molecular cloning and characterization of aldehyde oxidases in Arabidopsis thaliana. Plant Cell Physiol. 1998;39:433–42.

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Koshiba T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 2002;7:41–8.

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Koiwai H, Akaba S, Komano T, Oritani T, Kamiya Y, Koshiba T. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J. 2000a;23:481–8.

    Article  PubMed  CAS  Google Scholar 

  • Seo M, Peeters AJ, Koiwai H, Oritani T, Marion-Poll A, Zeevaart JA, Koornneef M, Kamiya Y, Koshiba T. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci USA. 2000b;97:12908–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol. 2004;45:1694–703.

    Article  PubMed  CAS  Google Scholar 

  • Siewers V, Smedsgaard J, Tudzynski P. The P450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea. Appl Environ Microbiol. 2004;70:3868–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siewers V, Kokkelink L, Smedsgaard J, Tudzynski P. Identification of an abscisic acid gene cluster in the grey mold Botrytis cinerea. Appl Environ Microbiol. 2006;72:4619–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sindhu RK, Walton DC. Conversion of xanthoxin to abscisic acid by cell-free preparations from bean leaves. Plant Physiol. 1987;85:916–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sindhu RK, Walton DC. Xanthoxin metabolism in cell-free preparations from wild type and wilty mutants of tomato. Plant Physiol. 1988;88:178–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan BC, Schwartz SH, Zeevaart JA, McCarty DR. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA. 1997;94:12235–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan BC, Cline K, McCarty DR. Localization and targeting of the VP14 epoxy-carotenoid dioxygenase to chloroplast membranes. Plant J. 2001;27:373–82.

    Article  PubMed  CAS  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu LJ, Li QB, Cline K, McCarty DR. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J. 2003;35:44–56.

    Article  PubMed  CAS  Google Scholar 

  • Taylor HF, Burden RS. Identification of plant growth inhibitors produced by photolysis of violaxanthin. Phytochemistry. 1970a;9:2217–23.

    Article  CAS  Google Scholar 

  • Taylor HF, Burden RS. Xanthoxin, a new naturally occurring plant growth inhibitor. Nature. 1970b;227:302–4.

    Article  PubMed  CAS  Google Scholar 

  • Taylor HF, Smith TA. Production of plant growth inhibitors from xanthophylls: a possible source of dormin. Nature. 1967;215:1513–4.

    Article  PubMed  CAS  Google Scholar 

  • Taylor IB, Linforth RST, Alnaieb RJ, Bowman WR, Marples BA. The wilty tomato mutants Flacca and Sitiens are impaired in the oxidation of Aba-Aldehyde to Aba. Plant, Cell Environ. 1988;11:739–45.

    Article  CAS  Google Scholar 

  • Taylor IB, Sonneveld T, Bugg TDH, Thompson AJ. Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. J Plant Growth Regul. 2005;24:253–73.

    CAS  Google Scholar 

  • Todoroki Y, Hirai N, Koshimizu K. 8′,8′-Difluoroabscisic acid and 8′,8′,8′-trifluoroabscisic acid as highly potent, long-lasting analogs of abscisic-acid. Phytochemistry. 1995;38:561–8.

    Article  CAS  Google Scholar 

  • Todoroki Y, Aoyama H, Hiramatsu S, Shirakura M, Nimitkeatkai H, Kondo S, Ueno K, Mizutani M, Hirai N. Enlarged analogues of uniconazole, new azole containing inhibitors of ABA 8′-hydroxylase CYP707A. Bioorg Med Chem Lett. 2009a;19:5782–6.

    Article  PubMed  CAS  Google Scholar 

  • Todoroki Y, Kobayashi K, Shirakura M, Aoyama H, Takatori K, Nimitkeatkai H, Jin MH, Hiramatsu S, Ueno K, Kondo S, Mizutani M, Hirai N. Abscinazole-F1, a conformationally restricted analogue of the plant growth retardant uniconazole and an inhibitor of ABA 8′-hydroxylase CYP707A with no growth-retardant effect. Bioorg Med Chem. 2009b;17:6620–30.

    Article  PubMed  CAS  Google Scholar 

  • Todoroki Y, Naiki K, Aoyama H, Shirakura M, Ueno K, Mizutani M, Hirai N. Selectivity improvement of an azole inhibitor of CYP707A by replacing the monosubstituted azole with a disubstituted azole. Bioorg Med Chem Lett. 2010;20:5506–9.

    Article  PubMed  CAS  Google Scholar 

  • Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 2008;146:1368–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueno K, Araki Y, Hirai N, Saito S, Mizutani M, Sakata K, Todoroki Y. Differences between the structural requirements for ABA 8′-hydroxylase inhibition and for ABA activity. Bioorgan Med Chem. 2005;13:3359–70.

    Article  CAS  Google Scholar 

  • Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K. CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J. 2006;46:171–82.

    Article  PubMed  CAS  Google Scholar 

  • Walkersimmons M, Kudrna DA, Warner RL. Reduced accumulation of aba during water-stress in a molybdenum cofactor mutant of barley. Plant Physiol. 1989;90:728–33.

    Article  CAS  Google Scholar 

  • Walton DC. Structure-activity relationships of abscisic acid analogs and metabolites. In: Addicott FT, editor. Abscisic acid. New York: Praeger; 1983. p. 113–46.

    Google Scholar 

  • Watanabe S, Matsumoto M, Hakomori Y, Takagi H, Shimada H, Sakamoto A. The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. Plant, Cell Environ. 2014;37:1022–36.

    Article  CAS  Google Scholar 

  • Xiong L, Ishitani M, Lee H, Zhu JK. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell. 2001;13:2063–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu JK. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem. 2002;277:8588–96.

    Article  PubMed  CAS  Google Scholar 

  • Xu ZJ, Nakajima M, Suzuki Y, Yamaguchi I. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol. 2002;129:1285–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu ZY, Lee KH, Dong T, Jeong JC, Jin JB, Kanno Y, Kim DH, Kim SY, Seo M, Bressan RA, Yun DJ, Hwang I. A vacuolar beta-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell. 2012;24:2184–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang SH, Choi DS. Characterization of genes encoding ABA 8′-hydroxylase in ethylene-induced stem growth of deepwater rice (Oryza sativa L.). Biochem Bioph Res Co. 2006;350:685–90.

    Article  CAS  Google Scholar 

  • Yang SH, Zeevaart JAD. Expression of ABA 8′-hydroxylases in relation to leaf water relations and seed development in bean. Plant J. 2006;47:675–86.

    Article  PubMed  CAS  Google Scholar 

  • Yokota T, Nakamura Y, Takahashi N, Nonaka H, Oshio H, Takatsuo S. Inconsistency between growth and endogenous levels of gibberellins, brassinosteroids, and sterols in Pisum sativum treated with uniconazole antipodes. In: Takahashi N, Phinney BO, MacMillan J, editors. Gibberellins. New York: Springer; 1991. pp. 339–49.

    Chapter  Google Scholar 

  • Zdunek-Zastocka E. Molecular cloning, characterization and expression analysis of three aldehyde oxidase genes from Pisum sativum L. Plant Physiol Biochem. 2008;46:19–28.

    Article  PubMed  CAS  Google Scholar 

  • Zdunek-Zastocka E, Sobczak M. Expression of Pisum sativum PsAO3 gene, which encodes an aldehyde oxidase utilizing abscisic aldehyde, is induced under progressively but not rapidly imposed drought stress. Plant Physiol Biochem. 2013;71:57–66.

    Article  PubMed  CAS  Google Scholar 

  • Zeevaart JAD, Creelman RA. Metabolism and physiology of abscisic-acid. Annu Rev Plant Phys. 1988;39:439–73.

    Article  CAS  Google Scholar 

  • Zhou R, Cutler AJ, Ambrose SJ, Galka MM, Nelson KM, Squires TM, Loewen MK, Jadhav AS, Ross ARS, Taylor DC, Abrams SR. A new abscisic acid catabolic pathway. Plant Physiol. 2004;134:361–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomokazu Koshiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Endo, A., Okamoto, M., Koshiba, T. (2014). ABA Biosynthetic and Catabolic Pathways. In: Zhang, DP. (eds) Abscisic Acid: Metabolism, Transport and Signaling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9424-4_2

Download citation

Publish with us

Policies and ethics