Skip to main content
Log in

Scanning electron microscopic obser vations of pollen grains and stigma in the self-incompatible heteromorphic species Primula malacoides Franch. and Forsythia x intermedia Zab., and genetics of sporopollenin deposition

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Scanning electron microscopic observations revealed differences in surface morphology and size of stigmatic papillae and pollen grains in the two forms of flower of the dimorphic species Primula malacoides and Forsythia x intermedia. In P. malacoides pin papillae are longer and have more inflated globose tips than those of the thrum form which have oval tips, and the larger thrum pollen grain has a rougher form of exine sculturing than pin pollen grain. The correspondence of exine pattern dimorphism with the dimorphism of floral form associated with the sporophytically controlled incompatibility system, indicates that the control of sporopollenin deposition is also sporophytically determined.

Scanning electron microscope observations have also been made of pollen grain-stigma interactions in compatible and incompatible pollinations.

Recent literature on the control of sporopollenin deposition is briefly discussed. It is concluded that the extent of deposition of the sporopollenin is controlled by the meiocytes but the actual template determination is controlled by the tapetal material, and much, if not all, of the sporopollenin itself may be synthesized in, and derived from, the tapetum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, H. G., 1954. Dimorphism and incompatibility in the Plumbaginaceae. Rapp. et Comm. 8ème Congr. Int. de Bot., Paris, Sect. 10: 133–134.

  • Baker, H. G., 1966. The evolution, functioning and breakdown of heteromorphic incompatibility systems. I. The Plumbaginaceae. Evolution 20: 349–368.

    Google Scholar 

  • Darwin, C. R. 1877. The different forms of flowers on plants of the same species. John Murray, London.

    Google Scholar 

  • Godwin, H., 1968. The origin of the exine. New Phytol. 67: 667–676.

    Google Scholar 

  • Hildebrand, F., 1867. Die Geschlechter-Verteilung bei den Pflanzen. Engelmann, Leipzig.

    Google Scholar 

  • Heslop-Harrison, J., 1962. Origin of exine. Nature 195: 1069–1071.

    Google Scholar 

  • Heslop-Harrison, J., 1968a. Pollen wall development. Science 161: 230–237.

    Google Scholar 

  • Heslop-Harrison, J., 1968b. Ribosome sites and S gene action. Nature 218: 90–91.

    Google Scholar 

  • Knox, R. B., 1971. Pollen wall proteins: localization, enzymic and antigenic activity during development in Gladiolus (Iridaceae). J. Cell Sci. 9: 209–237.

    Google Scholar 

  • Knox, R. B. & Heslop-Harrison, J., 1970. Pollen wall proteins: localization and enzymatic activity. J. Cell Sci. 6: 1–27.

    Google Scholar 

  • Kroh, M., 1964. An electron microscopic study of the behaviour of Cruciferae pollen after pollination. In: H. F. Linskens (Ed.), Pollen physiology and fertilization: 221–224. North-Holland, Amsterdam.

    Google Scholar 

  • Kroh, M. & A. J. Munting, 1967. Pollen germination and pollen tube growth in Diplotaxis tenuifolia after cross-pollination. Acta bot. neerl. 16: 182–187.

    Google Scholar 

  • Lewis, D., 1949. Incompatibility in flowering plants. Biol. Revs. 24: 472–496.

    Google Scholar 

  • Lewis, D., 1954. Comparative incompatibility in angiosperms and fungi. Adv. Genet. 6: 235–285.

    Google Scholar 

  • Lewis, D., S. Burrage & D. Walls, 1967. Immunological reactions of single pollen grains, electrophoresis and enzymology of pollen protein exudates. J. exp. Bot. 18: 371–378.

    Google Scholar 

  • Linskens, H. F. & W. Heinen, 1962. Cutinase-Nachweis in Pollen. Z. Bot. 50: 338–347.

    Google Scholar 

  • Ockendon, D. J., 1972. Pollen tube growth and the site of the incompatibility reaction in Brassica oleracea. New Phytol. 71: 519–522.

    Google Scholar 

  • Ornduff, R., 1970. Incompatibility and the pollen economy of Jepsonia parryi. Amer. J. Bot. 59: 1036–1041, 1970.

    Google Scholar 

  • Pandey, K. K., 1970. Time and site of the S-gene action, breeding systems and relationships in incompatibility. Euphytica 19: 364–372.

    Google Scholar 

  • Paton, J. B., 1921. Pollen and pollen-enzymes. Amer. J. Bot. 8: 471–501.

    Google Scholar 

  • Rogers, C. M. & B. D. Harris, 1969. Pollen exine deposition: A clue to its control. Amer. J. Bot. 56: 1209–1211.

    Google Scholar 

  • Roggen, H. P. J. R., 1972. Scanning electron microscopical observations on compatible and incompatible pollen-stigma interaction in Brassica. Euphytica 21: 1–10.

    Google Scholar 

  • Vuilleumier, B. S., 1967. The origin and evolutionary development of heterostyly in the angiosperms. Evolution 21: 210–226.

    Google Scholar 

  • Waterkeyn, L., 1964. Callose microsporocytaire et callose pollinique. In: H. F. Linskens (Ed.), Pollen physiology and fertilization: 52–58. North-Holland, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, K.K., Troughton, J.H. Scanning electron microscopic obser vations of pollen grains and stigma in the self-incompatible heteromorphic species Primula malacoides Franch. and Forsythia x intermedia Zab., and genetics of sporopollenin deposition. Euphytica 23, 337–344 (1974). https://doi.org/10.1007/BF00035876

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00035876

Keywords

Navigation