Skip to main content
Log in

Use of roots transformed by Agrobacterium rhizogenes in rhizosphere research: applications in studies of cadmium assimilation from sewage sludges

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The use of roots transformed by Agrobacterium rhizogenes in models for the rhizosphere is discussed. A list of species for which transformed root cultures have been obtained is provided and the example of studies of cadmium assimilation from sewage sludges is given to illustrate how transformed root cultures can be used in physiological tests under non-sterile conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann C: Pflanzen aus Agrobacterium rhizogenes Tumoren aus Nicotiana tabacum. Plant Sci Lett 8: 23–30 (1977).

    Google Scholar 

  2. Adam S: Obtention de racines transformées par Agrobacterium rhizogenes chez Eucalyptus gonni. Ir: Annales de Recherches Sylvicoles, pp. 7–21. AFOCEL, Paris (1987).

    Google Scholar 

  3. Ambros P, Matzke A, Matzke M: Localization of Agrobacterium rhizogenes T-DNA in plant chromosomes by in situ hybridization. EMBO 5: 2073–2077 (1987).

    Google Scholar 

  4. Banerjee-Chattopachyay S, Schwemmin A, Schwemmin D: A study of karyotypes and their alteration in cultured and Agrobacterium transformed roots of Lycopersicon peruvianum Mill. Theor Appl Genet 71: 258–262 (1985).

    Google Scholar 

  5. Beach K, Gresshoff P. In vitro culture of legume root tissue transformed by Agrobacterium rhizogenes. In: Somers D, Gengenbach B, Biesoboer D, Hackett W, Green C (ed) Proc 6th International Congress of Plant Tissue and Cell Culture, p. 155. University of Minnesota, Minneapolis (1986).

    Google Scholar 

  6. Bercetche J, Chriqui D, Adam S, David C: Morphogenetic and cellular reorientations induced by Agrobacterium rhizogenes (strains 1855, 2659 and 8196) on carrot, pea and tobacco. Plant Sci 52: 195–210 (1987).

    Article  Google Scholar 

  7. Brillanceau M: Etude chimique des alcaloïdes de deux expèces du genre Guettarda. Culture in vitro de racines transformées par Agrobacterium rhizogenes. Doctoral thesis, Université de Paris Sud, Orsay, Chimie Thérapeutique (1986).

  8. Comai L, Facciotti D, Hiatt W, Thompson G, Rose R, Stalker D: Expression in plants of a mutant aro A gene from Salmonella thyphimurium confers tolerance to glyphosate. Nature 317: 741–744 (1985).

    Google Scholar 

  9. Constantino P, Spano L, Pomponi M, Benvenuto E, Ancora G: The T-DNA of Agrobacterium rhizogenes is transmitted through meiosis of the progeny of hairy root plants. J Mol Appl Genet 2: 465–470 (1984).

    PubMed  Google Scholar 

  10. David C, Chilton MD, Tempé J: Conservation of T-DNA in plants regenerated from hairy root cultures. Bio/Technology 2: 73–76 (1984).

    Article  Google Scholar 

  11. David C, Tempé J: Genetic transformation of cauliflower (Brassica oleraeca L. var. botrytis) by the Ri T-DNA of Agrobacterium rhizogenes. Plant Cell Reports 7: 88–91 (1988).

    Article  Google Scholar 

  12. Deno H, Yamagata H, Emoto T, Yoshioka T, Yamada Y, Fujita Y: Scopolamine production by root cultures of Duboisia myoporoides II. Establishment of a hairy root culture by infection with Agrobacterium rhizogenes. J Plant Physiol 131: 315–323 (1987).

    Google Scholar 

  13. Eilers R, Miller E, Hepburn A, Skirvin R, Splittstoesser W: Agrobacterium induced tumor phenotypes in transformed sweet potato Ipomoea batatas Lam. Hort Science 21: 176 (1986).

    Google Scholar 

  14. Flores H, Filner P: Metabolic relationships of putrescine, GABA and alkaloids in cell and root cultures of Solanaceae. In: Neumann K, Barz W, Reinhard E (eds) Primary and Secondary Metabolism of Plant Cell Cultures, pp. 174–185. Springer-Verlag, Berlin (1985).

    Google Scholar 

  15. Flores H, Hoy M, Pickard J: Production of secondary metabolites by normal and transformed root cultures. In: Sommers D, Gegenbach B, Biesoboer D, Hackett W, Green C (eds) Proc 6th International Congress of Plant Tissue and Cell Culture, p. 177. University of Minnesota, Minneapolis (1986).

    Google Scholar 

  16. Flores H, Hoy M, Pickard J: Secondary metabolites from root cultures. Trends in BioTechnology 5: 64–69 (1987).

    Google Scholar 

  17. Guerche P, Jouanin L, Tepfer D, Pelletier G: Genetic transformation of oilseed rape (Brassica napus) by the Ri T-DNA of Agrobacterium rhizogenes and analysis of inheritance of the transformed phenotype. Mol Gen Genet 206: 382–386 (1987).

    Google Scholar 

  18. Hamill J, Parr A, Rhodes M, Robins R, Walton N: New routes to plant secondary products. Biotechnology 5: 800–804 (1987).

    Article  Google Scholar 

  19. Hamill J, Parr A, Robins R, Rhodes M: Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5: 111–114 (1986).

    Article  Google Scholar 

  20. Hanisch Ten Cate C, Ennik E, Roest S, Sree Ramulu K, Dijkhuis P, De Groot B: Regeneration and characterization of plants from potato root lines transformed by Agrobacterium rhizogenes. Theor Appl Genet 75: 452–459 (1988).

    Article  Google Scholar 

  21. Jouanin L, Vilaine F, Tourneur J, Pautot V, Muller J-F, Caboche M: Transfer of a 4.3 kb fragment of the TL-DNA of Agrobacterium rhizogenes strain A4 confers the pRi transformed phenotype to regenerated plants. Plant Sci 53: 53–63 (1987).

    Article  Google Scholar 

  22. Jung G, Tepfer D: Use of genetic transformation by the Ri TR-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots. Plant Sci 50: 145–151 (1987).

    Article  Google Scholar 

  23. Kamada H, Okamura N, Satake M, Harada H, Shimomura K: Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep 5: 239–242 (1986).

    Article  Google Scholar 

  24. Mano Y, Nabeshima S, Matsui C, Ohkawa H: Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Agric Biol Chem 50: 2715–2722 (1986).

    Google Scholar 

  25. Morgan A, Cox P, Turner D, Peel E, Davey M, Gartland K, Mulligan B: Transformation of tomato using an Ri plasmid vector. Plant Sci 49: 37–49 (1987).

    Article  Google Scholar 

  26. Mugnier J: Establishment of new hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7: 9–12 (1988).

    Article  Google Scholar 

  27. Nabeshima S, Mano Y, Ohkawa H: Production of tropane alkaloids by hairy root cultures of Scopolia japonica. Symbiosis 2: 11–18 (1986).

    Google Scholar 

  28. Noda T, Tanaka N, Mano Y, Nabeshima S, Ohkawa H, Matsui C: Regeneration of horseradish hairy roots incited by Agrobacterium rhizogenes infection. Plant Cell Rep 6: 283–286 (1987).

    Article  Google Scholar 

  29. Oliver J: Isozyme gene expression in potato tumors incited by Agrobacterium. Theor Appl Genet 72: 373–376 (1986).

    Article  Google Scholar 

  30. Ondrej M, Biskova R: Differentiation of Petunia hybrida tissues transformed by Agrobacterium rhizogenes and Agrobacterium tumefaciens. Biol Plant (Praha) 28: 152–155 (1986).

    Google Scholar 

  31. Ooms G, Karp A, Burrell M, Twell D, Roberts J: Genetic modification of potato development using Ri T-DNA. Theor Appl Genet 70: 440–446 (1985).

    Google Scholar 

  32. Ooms G, Twell D, Bossen M, Hoge J, Murrel M: Developmental regulation of Ri TL-DNA gene expression in roots, shoots and tubers of transformed potato (Solanum tuberosum cv. Désirée). Plant Mol Biol 6: 321–330 (1986).

    Google Scholar 

  33. Parr A, Hamill J: Relationships between biosynthetic capacities of Agrobacterium rhizogenes transformed hairy roots and intact, uninfected Nicotiana plants. Phytochemistry 26: 3241–3245 (1987).

    Article  Google Scholar 

  34. Pavingerova D, Ondrey M: Comparison of hairy root and crown gall tumors of Arabidopsis thaliana. Biol Plantarum 28: 149–151 (1986).

    Google Scholar 

  35. Payne J, Hamill J, Robins R, Rhodes M: Production of hyscyamine by hairy root cultures of Datura stramonium. Planta Medica 53: 474–478 (1987).

    Google Scholar 

  36. Petit A, David C, Dahl G, Ellis J, Guyon P, Casse-Delbart F, Tempé J: Further extension of the opine concept: plasmids in Agrobacterium rhizogenes co-operate for opine degradation. Mol Gen Genet 190: 204–214 (1983).

    Article  Google Scholar 

  37. Petit A, Stougaard J, Kuhle A, Marker K, Tempé J: Transformation and regeneration of the legume Lotus corniculatus. A system for molecular studies of symbiotic nitrogen fixation. Mol Gen Genet 207: 245–250 (1987).

    Article  Google Scholar 

  38. Pythoud F, Sinkar V, Nester E, Gordon M: Increased virulence of Agrobacterium rhizogenes conferred by the vir region of pTi Bo 542: application of the genetic engineering of poplar. Bio/Technology 5: 1323–1327 (1987).

    Article  Google Scholar 

  39. Quattrocchio F, Benvenuto E, Tavazza R, Cuozzo L, Ancora G: A study of the possible role of auxin in potato ‘hairy root’ tissues. J Plant Physiol 123: 143–150 (1986).

    Google Scholar 

  40. Raggio M, Raggio N: The nodulation of isolated leguminous roots. Am J Bot 44: 325–334 (1957).

    Google Scholar 

  41. Rhodes M, Hilton M, Parr A, Hamill M, Robins R: Nicotine production by ‘hair root’ cultures of Nicotiana rustica: fermentation and product recovery. Biotechnol Lett 8: 415–420 (1986).

    Google Scholar 

  42. Shahin E, Sukhapinda K, Simpson R, Spivey R: Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotypes harbor binary vector T-DNA, but no Ri plasmid T-DNA. Theor Appl Genet 72: 770–777 (1986).

    Article  Google Scholar 

  43. Shimomura K, Satake M, Kamada H: Production of useful secondary metabolites by hairy roots transformed with Ri plasmid. In: Sommers D, Gengenbach B, Biesoboer D, Hackett W, Green C (eds) Proc 6th International Congress of Plant Tissue and Cell Culture, p. 155. University of Minnesota, Minneapolis (1986).

    Google Scholar 

  44. Spano L, Mariotti D, Pezzoti M, Damiani F, Arcioni S: Hairy root transformation in alfalfa (Medico sativa L.). Theor Appl Genet 73: 523–530 (1987).

    Article  Google Scholar 

  45. Spano L, Pomponi M, Constantino P, Van Slogteren G, Tempé J: Identification of T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1: 291–300 (1982).

    Google Scholar 

  46. Sukhapinda K, Spielman A, Spivey R, Shahin E: Ri-plasmid as a helper for introducing vector DNA into alfalfa plants. Plant Mol Biol 8: 206–216 (1987).

    Google Scholar 

  47. Tanaka N, Hayakawa M, Mano Y, Ohkawa H, Matsui C: Infection of turnip and radish storage roots with Agrobacterium rhizogenes. Plant Cell Rep 4: 74–77 (1985).

    Article  Google Scholar 

  48. Taylor B, Amasino R, White F, Nester E, Gordon M: T-DNA analysis of plants regenerated from hairy root tumors. Mol Gen Genet 201: 554–557 (1985).

    Article  Google Scholar 

  49. Tepfer D: La transformation génétique de plantes supérieures par Agrobacterium rhizogenes. In: 2e Colloque sur les Recherches Fruitières, pp. 47–59. Centre Technique Interprofessionnel des Fruits et Légumes, Bordeaux (1982).

    Google Scholar 

  50. Tepfer D: The biology of genetic transformation of higher plants by Agrobacterium rhizogenes. In: Puhler A (ed.) Molecular Genetics of the Bacteria-Plant Interaction, pp. 248–258. Springer-Verlag, Berlin (1983).

    Google Scholar 

  51. Tepfer D: The potential uses of Agrobacterium rhizogenes in the genetic engineering of higher plants: nature got there first. In: Lurquin P, Kleinhofs A (eds) Genetic Engineering in Eukaryotes, p. 153–164. Plenum, New York (1983).

    Google Scholar 

  52. Tepfer D: Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 47: 959–967 (1984).

    Article  Google Scholar 

  53. Tepfer D: Ri T-DNA from Agrobacterium rhizogenes: source of genes having applications in rhizosphere biology and plant development, ecology and evolution: In: Kosuge T, Nester E (eds) Plant-Microbe Interactions: McGraw-Hill, New York, in press.

  54. Tepfer D, Bonnett H: The role of phytochrome in the geotropic behavior of roots of Convolvulus arvensis L. Planta 106: 311–324 (1972).

    Google Scholar 

  55. Tepfer D, Tempé J: Production d'agropine par des racines formées sous l'action d'Agrobacterium rhizogenes souche A4. C R Acad Sci 292: 153–156 (1981).

    Google Scholar 

  56. Trulson A, Simpson R, Shahin E: Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenes. Theor Appl Genet 73: 11–15 (1986).

    Article  Google Scholar 

  57. Waltonn N, Belshaw N: The effect of cadaverine on the formation of anabasine from lysine in hairy root cultures of Nicotiana hesperis. Plant Cell Rep 7: 115–118 (1988).

    Article  Google Scholar 

  58. Wei Z, Kamada H, Harada H: Transformation of Solanum nigrum L. protoplasts by Agrobacterium rhizogenes. Plant Cell Rep 5: 93–96 (1985).

    Article  Google Scholar 

  59. Yoshikawa T, Furuya T: Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep 6: 449–453 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tepfer, D., Metzger, L. & Prost, R. Use of roots transformed by Agrobacterium rhizogenes in rhizosphere research: applications in studies of cadmium assimilation from sewage sludges. Plant Mol Biol 13, 295–302 (1989). https://doi.org/10.1007/BF00025317

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00025317

Key words

Navigation