Skip to main content
Log in

Fractal effects of crack propagation on dynamic stress intensity factors and crack velocities

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Crack extension paths are often irregular, producing rough fracture surfaces which have a fractal geometry. In this paper, crack tip motion along a fractal crack trace is analysed. A fractal kinking model of the crack extension path is established to describe irregular crack growth. A formula is derived to describe the effects of fractal crack propagation on the dynamic stress intensity factor and on crack velocity. The ratio of the dynamic stress intensity factor to the applied stress intensity factor K(L(D, t), V)/K(L(t), 0), is a function of apparent crack velocity Vo, microstructure parameter da (grain size/crack increment step length), fractal dimension D, and fractal kinking angle of crack extension path ϑ. For fractal crack propagation, the apparent (or measured) crack velocity Vo, cannot approach the Rayleigh wave speed Cr. Why Vo is significantly lower than Cr in dynamic fracture experiments can be explained by the effects of fractal crack propagation. The dynamic stress intensity factor and apparent crack velocity are strongly affected by the microstructure parameter (da), fractal dimension D, and fractal kinking angle of crack extension path ϑ. This is in good agreement with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge (1990).

    Book  Google Scholar 

  2. H. Guo, Journal of the Mechanics and Physics of Solids 41 (3) (1993) 457–486.

    Article  Google Scholar 

  3. H. Xie, International Journal of Fracture 41 (4) (1989) 267–274.

    Article  Google Scholar 

  4. H. Xie, Chinese Science Bulletin 34 (5) (1989) 1292–1296.

    Google Scholar 

  5. K. Ravi-Chandar and W.G. Knauss, International Journal of Fracture 26 (1984) 65–80.

    Article  Google Scholar 

  6. M. Watanabe, International Journal of Fracture 49 (1991) 69–77.

    Article  Google Scholar 

  7. R.V. Goldstein and J. Lewandowski, Acta Mechanica 91 (1992) 235–243.

    Article  Google Scholar 

  8. B.B. Madelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company (1982).

  9. H. Xie, Fractals in Rock Mechanics, A.A. Balkema Publishers, Rotterdam (1993).

    Google Scholar 

  10. S.L. Huang, S.M. Oelfke and R.C. Speck, International Journal of Rock Mechanics and Mining Science 29 (1992) 89–98.

    Article  Google Scholar 

  11. W.L. Power and T.E. Tullis, Journal of Geophysical Research 96B (1991)_415–424.

    Article  Google Scholar 

  12. B.B. Mandelbrot, Physica Scripta 29 (1992) 257–260.

    Google Scholar 

  13. S.R. Brown and C.H. Scholz, Journal of Geophysical Research 90B (1985) 12575–12582.

    Article  Google Scholar 

  14. Pozen Wong, J. Howard and J.S. Lin, Physical Review Letters 57 (1986) 637–640.

    Article  Google Scholar 

  15. B.B. Madelbrot et al., Nature 308 (1984) 721–723.

    Article  Google Scholar 

  16. C.S. Pande et al., Acta Metallurgica 35 (7) (1987) 1633–1637.

    Article  Google Scholar 

  17. H. Xie and Z.D. Chen, Acta Mechanica Sinica 4 (3) (1988) 256–267.

    Google Scholar 

  18. H. Xie, Damage Mechanics of Rock and Concrete Materials, CUMT Press (1990) (in Chinese).

  19. R.E. Williford, Scripta Metallurgica et Materialia 25 (1991) 455–460.

    Article  Google Scholar 

  20. C.W. Lung, in Fractals in Physics, L. Pirtronero and E. Tosatti (eds.), Elsevier (1986) 189–192.

  21. D.L. Turcotte, Fractals in Geology and Geophysics, Cambridge University Press, Cambridge (1992).

    Google Scholar 

  22. H. Xie, D.J. Sanderson and D.C.P. Peacock, in Proceedings, 2nd International Conference on Nonlinear Mechanics, Beijing, China (1993).

  23. H. Xie and D.J. Sanderson, in Proceedings, 2nd International Conference on Nonlinear Mechanics, Beijing, China (1993).

  24. R. Pippan, Engineering Fracture Mechanics 44, 5 (1993) 821–829.

    Article  Google Scholar 

  25. B. Cotterell and J.R. Rice, International Journal of Fracture 16 (1980) 155–169.

    Article  Google Scholar 

  26. R. Pippan, Materials Science and Engineering A 138 (1991) 1–13.

    Article  Google Scholar 

  27. P.D. Panagiotopoulos, International Journal of Solids and Structures 29, 17 (1992) 2159–2175.

    Article  Google Scholar 

  28. H. Wallin, Constr. Approx. 5 (1989) 137–150.

    Article  Google Scholar 

  29. M. Barnsley, Fractals Everywhere, Academic Press Inc. (1988).

  30. L.R.F. Rose, International Journal of Fracture 12, 6 (1976) 799–813.

    Google Scholar 

  31. J.J. Mecholsky, D.E. Passoja and K.S. Feinberg-Ringel, Journal of the American Ceramic Society 72 (1989) 60–65.

    Article  Google Scholar 

  32. C.W. Lung and Z.Q. Mu, Physical Review B. 38, 16 (1988) 11781–11784.

    Article  Google Scholar 

  33. C. Li, H. Zhu and G. Li, Engineering Fracture Mechanics 46, 1 (1993) 157–163.

    Article  Google Scholar 

  34. H. Xie, International Journal of Fracture 65, 4 (1994) R71-R75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, H., Sanderson, D.J. Fractal effects of crack propagation on dynamic stress intensity factors and crack velocities. Int J Fract 74, 29–42 (1996). https://doi.org/10.1007/BF00018573

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00018573

Keywords

Navigation