Skip to main content
Log in

A tentative explanation for two parameters, C and m, in Paris equation of fatigue crack growth

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The two parameters, C and m, which characterize the Paris equation for fatigue crack growth are explained in relation to the crack closure concept suggested by Elber. It is proposed that the range of effective incremental change in stress intensity factor (ΔK) needed for crack growth should have a second power correlation with the growth rate. The crack growth is essentially determined by cumulative damage to the material in cycled plastic zone near the crack tip, and is relatively insensitive to the applied ΔK-values and the mechanical properties of material. However, the crack closure behavior is expected to depend on both the stress range and the material properties. Thus it is concluded that the exponent parameter m reflects mainly the dependency of crack closure behavior on ΔK. For example, in the case of m=4 the crack opening level increases linearly with increase in ΔK, while in the case of m=2 it remains constant. It is suggested that the cyclic straining at the crack tip possibly varies with ΔK, thus changing primarily the crack closure behavior rather than the damage accumulation process in the plastic zone.

Résumé

Les deux paramètres, C et m, qui caractérisent l'équation de Paris pour la propagation des fissures de fatigue sont expliqués en relation avec le concept de fermeture d'une fissure suggéré par Elber. On propose que la grandeur du changement effectif du facteur d'intensité de contrainte ΔK nécessaire à l'accroissement d'une fissure figure à une puissance deuxième dans une corrélation avec le taux de croissance. La croissance d'une fissure est essentiellement déterminée par le dommage cumulatif infligé au matériau dans la zône de déformation plastique cyclique au voisinage de l'extrémité de la fissure; il est relativement insensible aux valeurs appliquées de ΔK et aux propriétés mécaniques du matériau. Toutefois, le comportement à la fermeture d'une fissure devrait dépendre à la fois du taux de contrainte et des propriétés du matériau. Il est donc conclu que le paramètre exponentiel m représente principalement la dépendance du comportement à la fermeture d'une fissure par rapport à ΔK. A titre d'exemple, dans le cas de m=4, le niveau de fermeture de la fissure augmente linéairement avec un accroissement de ΔK, tandis que, dans le cas de m=2, il demeure constant. On suggère que les déformations cycliques à l'extrémité de la fissure peuvent varier avec ΔK et modifient ainsi en premier lieu le comportement à la fermeture de la fissure plutôt que le processus d'accumulation de dommages dans la zône plastique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.Kitagawa, (in Japanese), Journal of the Japanese Society of Mechanical Engineers, 75 (1972) 1068–1080.

    Google Scholar 

  2. D.Koshiga and M.Kawahara, (in Japanese), Journal of the Society of Naval Architects of Japan, 153 (1973) 305–312.

    Google Scholar 

  3. G.T. Hahn, M. Sarrate and A.R. Rosenfield, Experiments on the nature of the fatigue crack plastic zone, Proceedings of the Air Force Conference on Fatigue and Fracture of Aircraft Structures and Materials, AFFDLTR-70–144 (September 1970) 425–445.

  4. K.R.Lehr and H.W.Liu, International Journal of Fracture Mechanics, 5 (1969) 45–55.

    Google Scholar 

  5. R.J.Donaue, H.M.Clark, P.Atanmo, R.Kumble and A.J.McEvily, International Journal of Fracture Mechanics, 8 (1972) 209–219.

    Google Scholar 

  6. W. Elber, The significance of fatigue crack closure, ASTM STP486, (1971) 230–242.

  7. A.Ohta and E.Sasaki, International Journal of Fracture, 11 (1975) 1049–51.

    Google Scholar 

  8. A. Ohta and E. Sasaki, Fatigue crack closure over the range of stress ratios from −1 to 0.8 down to stress intensity threshold level in HT80 steel and Sus304 stainless steel, submitted for publication in International Journal of Fracture.

  9. J. Weertman, Rate of growth of fatigue cracks as calculated from the theory of infinitesimal dislocations distributed on a plane, Proceedings of the International Conference on Fracture, Sendai, Japan, (1965).

  10. J.R. Rice, Mechanics of crack tip deformation and extension by fatigue, ASTM STP415, (1967) 247–311.

  11. K.Tanaka and S.Matsuoka, Journal of Material Science, 11 (1976) 656–664.

    Google Scholar 

  12. G.T.Hahn, R.G.Hoagland and A.Rosenfield, Metallurgical Transactions, 3 (1972) 1189–1202.

    Google Scholar 

  13. J.R.Rice and G.F.Rosengren, Journal of the Mechanics and Physics of Solids, 16 (1968) 1–12.

    Google Scholar 

  14. J.W.Hutchinson, Journal of the Mechanics and Physics of Solids, 16 (1968) 13–31.

    Google Scholar 

  15. E.F.J. von Euw, R.W. Hertzberg and R. Roberts, Delay effects in fatigue crack propagation, ASTM STP513, (1972) 230–259.

  16. H.Kobayashi, Introduction to fracture mechanics, Hihakaikensa (in Japanese), 24 (1975) 710–722.

    Google Scholar 

  17. S.Matsuoka, K.Tanaka and M.Kawahara, Engineering Fracture Mechanics, 8 (1976) 507–523.

    Google Scholar 

  18. S. Matsuoka, K. Tanaka and M. Kawahara, (in Japanese), Reprints of Japanese Society of Mechanical Engineers, No. 760–2, (1976) 189–192.

  19. M.Kikukawa, M.Jono, K.Tanaka and M.Takatani, (in Japanese), Journal of the Society for Material Science (Japan), 25 (1976) 899–903.

    Google Scholar 

  20. K.Ohji, K.Ogura and Y.Okubo, Engineering Fracture Mechanics, 7 (1975) 457–464.

    Google Scholar 

  21. M. Shiratori, T. Miyoshi and H. Miyamoto, (in Japanese), Reprints of Japanese Society of Mechanical Engineers, No. 760–2, (1976) 197–208.

  22. T. Yokobori and T. Aizawa, Some notes on the kinetic theory of fatigue crack propagation rate, Research Institute for the Strength and Fracture of Materials, Rpt. 9 (1973) 65–67.

  23. T. Yokobori, I. Kawada and H. Hata, The effects of ferrite grain size on the stage II fatigue crack propagation in plain carbon steel, Research Institute for the Strength and Fracture of Materials, Rpt. 9 (1973) 35–64.

  24. T.Yokobori, A.T.YokoboriJr. and A.Kamei, International Journal of Fracture, 11 (1975) 781–788.

    Google Scholar 

  25. S. Majumdar and JoDean Morrow, Correlation between fatigue crack propagation and low cycle fatigue properties, ASTM STP559, (1974) 159–182.

  26. B.Tomkins, Philosophical Magazine, 18 (1968) 1041–1066.

    Google Scholar 

  27. C.A.Griffis and J.W.Spretnak, Transactions ISIJ, 9 (1969) 372–387.

    Google Scholar 

  28. J.M.Krafft, Applied Materials Research, 3 (1964) 88.

    Google Scholar 

  29. J.C.Grosskreutz, The mechanism of metal fatigue (I), phys. stat. sol. (b), 47 (1971) 11–31.

    Google Scholar 

  30. M.Klesnil and P.Lukas, Engineering Fracture Mechanics, 4 (1972) 77–92.

    Google Scholar 

  31. M.Klesnil and P.Lukas, Materials Science and Engineering, 9 (1972) 231–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Matsuoka, S. A tentative explanation for two parameters, C and m, in Paris equation of fatigue crack growth. Int J Fract 13, 563–583 (1977). https://doi.org/10.1007/BF00017293

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017293

Keywords

Navigation