Skip to main content
Log in

Fracture parameter for thermoinelasticity

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A path domain independent integral, S, that equals the energy release rate for an extending crack in a thermoinelastic field is presented. This paper develops the new parameter from its theoretical foundations in continuum mechanics, demonstrates that S can be calculated from finite element results and describes how S can be obtained from experiments.

The S-integral is developed for simple uncoupled and linearized fully coupled quasi static thermoinelastic cases. Invoking thermoinelastic continuum mechanics linearized for small strain and small temperature changes, S emanates from a discrete Lagrangian describing the thermoinelastic system and Noether's theorem from classical field theory. S defines the force acting on an extending crack and represents a conservation law for a crack free body analogous to the Budiansky and Rice interpretation of the J-integral.

The conservation law nature of S for a singularity free region is demonstrated by both computational and physical experiments. S can be calculated from finite element results via a two step postprocessing algorithm. Furthermore, S can be obtained from physical experiments. The S-integral offers a parameter to improve the understanding of the strength and reliability of materials subjected to thermomechanical loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Griffith, Philosophical Transactions of the Royal Society of London, A 221 (1921) 163–197.

    Google Scholar 

  2. A.A. Griffith, in Proceedings 1st International Congress on Applied Mechanics, Biezeno and Burgers (eds.), Waltman (1925) 55–63.

  3. G.R. Irwin, Fracturing of Metals, American Society of Metals (1948) 147–166.

  4. E. Orowan, Welding Journal 34 (1955) 157s–160s.

    Google Scholar 

  5. J.D. Landes and J.A. Begley, Mechanics of Crack Growth, ASTM STP 590, Philadelphia (1976) 128–148.

  6. N.L. Goldman and J.W. Hutchinson, International Journal of Solids and Structures 11 No. 5 (1975) 575–592.

    Google Scholar 

  7. S.N. Atluri, Engineering Fracture Mechanics 16 No. 3 (1982) 341–364.

    Google Scholar 

  8. J.C. Simo and T. Honein, Journal of Applied Mechanics 57 (1990) 488–497.

    Google Scholar 

  9. S.S. Manson, G.R. Halford, and M.H. Hirschberg, Symposium on Design for Elevated Temperature Environment, American Society for Mechanical Engineers, New York (1971) 12–24.

    Google Scholar 

  10. G.R. Halford, M.H. Hirschberg and S.S. Manson, Fatigue at Elevated Temperatures, ASTM STP 520, (1973) 658–669.

  11. K.S. Kim and T.W. Orange, in Fracture Mechanics: Eighteenth Symposium, STP 945, D.T. Read and R.P. Reed (eds.), American Society for Testing and Materials, Philadelphia (1988) 713–729.

    Google Scholar 

  12. M.F. Kanninen and C.H. Popelar, Advanced Fracture Mechanics, Oxford University Press, New York (1985).

    Google Scholar 

  13. T.K. Hellen and W.S. Blackburn, Non-Linear Fracture Mechanics and Finite Elements, Central Electricity Generating Board, Berkeley Nuclear Laboratories, Gloucestershire (1986).

    Google Scholar 

  14. S.N. Atluri, in Computational Methods in the Mechanics of Fracture, Volume 2 in Computational Methods in Mechanics, S.N. Atluri (ed.) North-Holland, Elsevier Science Publishers (1986) 121–165.

    Google Scholar 

  15. E. Noether, Gottinger Nachrichten Mathematisch-Physicalische Klasse, 2, (1918) 235, English translation by M.A. Travel, Transport Theory and Statistical Physics 1 (1971) 183–207.

    Google Scholar 

  16. J.C. Simo, J.G. Kennedy and R.L. Taylor, Computer Methods in Applied Mechanics and Engineering 74 (1989) 177–206.

    Google Scholar 

  17. B. Budiansky and J.R. Rice, Journal of Applied Mechanics 40, (1973) 201–203.

    Google Scholar 

  18. D.A. Wagner, Fracture Characterization for Thermoinelasticity. Stanford University Ph.D. dissertation, University Microfilms Inc., Ann Arbor, Michigan (1990).

  19. D.A. Wagner, G.P. Sendeckyj and S.D. Sheppard, Engineering Fracture Mechanics (1992) to appear.

  20. J.C. Simo, J.G. Kennedy and S. Govindjee, International Journal for Numerical Methods in Engineering 26, No. 10 (1988) 2161–2185.

    Google Scholar 

  21. J.C. Simo and T.J.R. Hughes, Elastoplasticity and Viscoplasticity; Computational Aspects, Springer Verlag Series in Applied Mathematics (1989) to appear.

  22. R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, Oxford, U.K. (1950), (Latest Edition, 1983).

    Google Scholar 

  23. P. Perzyna, in Advances in Applied Mechanics 11 Academic Press, New York (1971).

    Google Scholar 

  24. B.D. Coleman and W. Noll, Archive for Rational Mechanics and Analysis 13 (1963) 167–178.

    Google Scholar 

  25. I.M. Gelfand and S.V. Fomin, Calculus of Variations, translated by R. A. Silverman, Prentice Hall, Inc., Englewood Cliffs, New Jersey (1963).

    Google Scholar 

  26. S.N. Atluri, M. Nakagaki, T. Nishioka and Z.B. Kuang, Engineering Fracture Mechanics 23, No. 1 (1986) 167–182.

    Google Scholar 

  27. G.C. Sin and D.Y. Tzou, Theoretical and Applied Mechanics 6 (1986) 103–111.

    Google Scholar 

  28. G.P. Sendeckyj, Private communications, January–November (1989).

  29. D.E. Carlson, in Handbuch der Phsyik VIa/2, C.A. Truesdell (ed.), Springer Verlag, Berlin (1972). 041

    Google Scholar 

  30. W. Nowacki, Thermoelasticity, 2nd ed., translated by H. Zorski, Pergamon Press, Oxford, and PWN Polish Scientific Publishers, Warszawa (1986).

    Google Scholar 

  31. M.A. Biot, Journal of Applied Physics 27, No. 3 (1956) 240–253.

    Google Scholar 

  32. M.A. Biot, Journal of Aero-Space Science 26, No. 7 (1959) 401–408.

    Google Scholar 

  33. Y.C. Fung, Foundations of Solid Mechanics, Prentice Hall, New York (1965) Chapters 12–14.

    Google Scholar 

  34. G.C. Sarti and G. Medri, Theoretical and Applied Fracture Mechanics 4 (1985) 175–179.

    Article  Google Scholar 

  35. H. Goldstein, Classical Mechanics, 2nd ed., Addison-Wesley, New York (1980).

    Google Scholar 

  36. J. Rosen, Annals of Physics 82 (1974) 70–88.

    Article  Google Scholar 

  37. W. Günther, Abbandlungen, Braunschweiger Wissenschaftliche Gesellschaft 14 (1962) 53 ff.

    Google Scholar 

  38. J.K. Knowles and E. Sternberg, Archive for Rational Mechanics and Analysis 44 (1972) 187–211.

    Article  Google Scholar 

  39. D.C. Fletcher, Archive for Rational Mechanics and Analysis 60 (1976) 329–353.

    Article  Google Scholar 

  40. P.J. Olver, Archive for Rational Mechanics and Analysis 85, No. 2 (1984) 111–129.

    Article  Google Scholar 

  41. P.J. Olver, Archive for Rational Mechanics and Analysis 85, No. 2 (1984) 131–160.

    Article  Google Scholar 

  42. J.D. Eshelby, Philosophical Transactions of the Royal Society, A 244 (1951) 87–111.

    Google Scholar 

  43. J.D. Eshelby, Solid State Physics 3 (1956) 79–144.

    Google Scholar 

  44. J.D. Eshelby, Journal of Elasticity 5, Nos. 3–4 (1975) 321–335.

    Google Scholar 

  45. J.R. Rice, Journal of Applied Mechanics 35, No. 2 (1968) 379–386.

    Google Scholar 

  46. M.E. Gurtin, An Introduction to Continuum Mechanics, Academic Press, Orlando, Florida (1981).

    Google Scholar 

  47. J.C. Simo, R.L. Taylor and K.S. Pister, Computer Methods in Applied Mechanics and Engineering 51 (1985) 177–208.

    Article  Google Scholar 

  48. T.J.R. Hughes, The Finite Element Method. Prentice Hall, Inc., Englewood Cliffs, New Jersey (1987).

    Google Scholar 

  49. J.C. Simo, Computer Methods in Applied Mechanics and Engineering 68 (1988) 1–31.

    Article  Google Scholar 

  50. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, 4th ed., McGraw Hill, London (1989).

    Google Scholar 

  51. D.A. Wagner, G.P. Sendeckyj, S.D. Sheppard and J.C. Simo, ‘Finite Element Calculation of Path Domain Independent Integral for Thermoinelasticity’, presented at the ASME Winter Annual Meeting, Atlanta, Georgia (1991).

  52. Metals Handbook, 9th edn., Volume 2, Properties and Selection: Nonferrous Alloys and Pure Metals, American Society for Metals, Metals Park, OH (1985).

  53. Military Standardization Handbook-5D, National Standards Association, Inc., Bethesda, MD (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, D.A., Simo, J.C. Fracture parameter for thermoinelasticity. Int J Fract 56, 159–187 (1992). https://doi.org/10.1007/BF00015598

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00015598

Keywords

Navigation