Skip to main content
Log in

Analysis of stitched laminated ENF specimens for interlaminar mode II fracture toughness

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Two simple micromechanics based models are proposed to predict the effect of through-thickness reinforcement (stitching) on the improvement of delamination crack growth resistance in end-notched flexure (ENF) specimens. In the first model, it is assumed that stitches stretch elastically and then rupture when the load carried approaches the failure load. In the second model, it is assumed that stitches are discontinuous and that the stitch thread-matrix interface is completely frictional. Approximate closed form solutions for energy release rates are obtained, and the effects of stitch density, matrix-stitch thread interfacial shear stress, stitch thread diameter, volume fraction of stitches, critical energy release rate and Young's modulus are then examined. A simple design study for sizing the ENF specimen to minimise geometric nonlinear response is presented. The influences of interlaminar shear deformation and friction between the crack surfaces on the strain energy release rate are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.F. Devitt, R.A. Schapery and W.L. Bradley, Journal of Composite Materials 14 (1980) 270–285.

    Google Scholar 

  2. E.F. Rybicki, D.W. Schmueser and J. Fox, Journal of Composite Materials 11 (1977) 470–487.

    Google Scholar 

  3. S.S. Wang, ASME Journal of Applied Mechanics 47 (1980) 64–70.

    Google Scholar 

  4. F.X. DeCharentenay, J.M. Harry, N.J. Prel and M.L. Benzeggah, in Effects of Defects in Composite Materials, ASTM STP 836 (1984) 84–103.

  5. T.K. O'Brien, in Effects of Defects in Composite Materials, ASTM STP 836 (1984) 125–142.

  6. S.N. Chatterjee, R.B. Pipes and R.A. Blake, Jr., in Effects of Defects in Composite Materials, ASTM STP 836 (1984) 161–174.

  7. S.N. Chatterjee, R.B. Pipes and W.A. Dick, Composites Science and Technology 25 (1986) 49–67.

    Google Scholar 

  8. A.J. Russell and K.N. Street, in Progress in Science and Engineering of Composites, T. Hayashi et al. (eds), ICCM-IV, Tokyo, Japan (1982) 279–286.

  9. G. Dorey, S.M. Bishop and P.T. Curtis, Composites Science and Technology 23 (1985) 221–237.

    Google Scholar 

  10. J.K. Kim, C. Baillie, J. Poh and Y.-W. Mai, Composites Science and Technology 43 (1992) 283–297.

    Google Scholar 

  11. J.K. Kim, D. Mackay and Y.-W. Mai, Composites 24 (1993) 485–494.

    Google Scholar 

  12. X.-Z. Hu and Y.-W. Mai, Composites Science and Technology 46 (1993) 147–156.

    Google Scholar 

  13. K.B. Su, in Advances in Thermoplastic Matrix Composite Materials, ASTM STP 1044 (1989) 279–300.

  14. D. Shu and Y.-W. Mai, Composites Science and Technology 47 (1993) 25–33.

    Google Scholar 

  15. M.B. Dow and D.L. Smith, ‘Damage Tolerant Composite Materials Produced by Stitching Carbon Fibres’, 21st International SAMPE Technical Conference, Covina, California (Sept 25–28 1989) 595–605.

  16. D. Liu, Journal of Reinforced Plastics and Composites 1 (1991) 59–69.

    Google Scholar 

  17. L.A. Mignery, T.M. Tan and C.T. Sun, in Delamination and Debonding of Materials, ASTM STP 876 (1985) 371–385.

  18. Y. Ogo, ‘The Effect of Stitching on In-plane and Interlaminar Properties of Carbon Fibre/Epoxy Fabric Laminates’, M. Sci. thesis, University of Delaware, Newark, Delaware (May 1987).

  19. A.B. Macander, R.M. Crane and E.T. Camponeschi, Jr, in High Modulus Fibre Composites in Ground Transportation and High Volume Application, ASTM STP 873 (1986) 422–445.

  20. K. Dransfield, C. Baillie and Y.-W. Mai, Composites Science and Technology 50 (1994) 305–317.

    Google Scholar 

  21. V.A. Guenon, J.W. GillespieJr. and T.-W. Chou, Journal of Materials Science 24 (1989) 4168–4175.

    Google Scholar 

  22. J.-H. Byun, J.W. GillespieJr. and T.-W. Chou, Journal of Composite Materials 24 (1990) 497–518.

    Google Scholar 

  23. L.K. Jain and Y.-W. Mai, Composites Science and Technology 51 (1994) 331–345.

    Google Scholar 

  24. L.K. Jain and Y.-W. Mai, Journal of Applied Composite Materials (1994) in press.

  25. D. Shu and Y.-W. Mai, Composites Science and Technology 49 (1993) 165–171.

    Google Scholar 

  26. G. Farley and L. Dickinson, Journal of Reinforced Plastics and Composites 6 (1992) 633–642.

    Google Scholar 

  27. S.N. Chatterjee, Journal of Composite Materials 25 (1991) 470–493.

    Google Scholar 

  28. S.N. Chatterjee and V. Rammath, International Journal of Solids and Structures 24 (1988) 439–458.

    Google Scholar 

  29. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, 3rd edn., McGraw-Hill (1970).

  30. J.W. GillespieJr., L.A. Carlsson and R.B. Pipes, Composites Science and Technology 27 (1986) 177–197.

    Google Scholar 

  31. L.A. Carlsson, J.W. GillespieJr. and R.B. Pipes, Journal of Composite Materials 20 (1986) 594–604.

    Google Scholar 

  32. M.D. Greenberg, Foundations of Applied Mathematics, Prentice-Hall (1978).

  33. L.K. Jain and R.C. Wetherhold, Applied Mechanics Reviews 45 (1992) 377–389.

    Google Scholar 

  34. L.K. Jain and Y.-W. Mai, Fatigue and Fracture of Engineering Materials and Structures 17 (1994) 339–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, L.K., Mai, YW. Analysis of stitched laminated ENF specimens for interlaminar mode II fracture toughness. Int J Fract 68, 219–244 (1994). https://doi.org/10.1007/BF00013069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00013069

Keywords

Navigation