Skip to main content
Log in

The Role of Stitch Yarn on the Delamination Resistance in Non-crimp Fabric: Chemical and Physical Interpretation

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In a 3D preform, the out-of-plane reinforcement is effective for decelerating or suppressing the delamination process as the non-crimp fabric does not connect the neighboring laminae effectively. Hence, the interlaminar strength of the stitched laminae is supposed to behave in the same way as a regular unidirectional composite. In order to determine whether or not the stitched yarns contribute to the interlaminar fracture toughness, this study determinated the delamination resistance of a quasi-isotropic laminate. The analysis was based on interlaminar fracture toughness (G Ic) and propagation energy curve in tests conducted in mode I opening with double cantilever beam specimen geometry. The results of fracture toughness as well as strain energy for propagation were compared to their fracture surface. A decrease in the propagation energy prevailed in the surface because the stitch yarn replaced the carbon fiber/epoxy interface, which has better chemical affinities, i.e., covalent bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.Y. Shiino, L.T. Bergmann, M.O.H. Cioffi, and A. Materials, Effect of Stitching Yarns of NCF Fabric Delamination Behavior Under Mode I Opening in 90°/90° Interface in a Quasi-Isotropic Laminate, 2014, p 1–6

  2. M.Y. Shiino, M.O.H. Cioffi, H.C.J. Voorwald, and E.C. Ortiz, Tricot Stitched Carbon Fiber Reinforced Polymer Composite Laminates Manufactured by Resin Transfer Molding Process: C-Scan and Flexural Analysis, J. Compos. Mater., 2013, 47, p 1695–1703. doi:10.1177/0021998312450928

    Article  Google Scholar 

  3. L. Yao, R. Alderliesten, M. Zhao, and R. Benedictus, Bridging Effect on Mode I, Fatigue Delamination Behavior in Composite Laminates, Compos. A Appl. Sci. Manuf., 2014, 63, p 103–109. doi:10.1016/j.compositesa.2014.04.007

    Article  Google Scholar 

  4. M.Y. Shiino, R.C. Alderliesten, M.V. Donadon, H.J.C. Voorwald, and M.O.H. Cioffi, Applicability of Standard Delamination Tests (Double Cantilever Beam and End Notch Flexure) for 5HS Fabric-Reinforced Composites in Weft-Dominated Surface, J. Compos. Mater., 2014, doi:10.1177/0021998314549821

    Google Scholar 

  5. A.P. Mouritzas, K.H. Leongb, and I. Herszbergc, A Review of the Effect of Stitching on the In-Plane Mechanical Properties of Fibre-Reinforced Polymer Composites, 1997, p 979–991

  6. K.P. Plain and L. Tong, An Experimental Study on Mode I, and II, Fracture Toughness of Laminates Stitched with a One-Sided Stitching Technique, Compos. A Appl. Sci. Manuf., 2011, 42, p 203–210. doi:10.1016/j.compositesa.2010.11.006

    Article  Google Scholar 

  7. Y. Wei and J. Zhang, Characterization of Microstructure in Stitched Unidirectional Composite Laminates, Compos. A Appl. Sci. Manuf., 2008, 39, p 815–824. doi:10.1016/j.compositesa.2008.01.012

    Article  Google Scholar 

  8. E.S. Greenhalgh, Failure Analysis and Fractography of Polymer Composites, First Edit, CRC Press, Oxford, 2009

    Book  Google Scholar 

  9. A. Yudhanto, N. Watanabe, Y. Iwahori, and H. Hoshi, Effect of Stitch Density on Tensile Properties and Damage Mechanisms of Stitched Carbon/Epoxy Composites, Compos. B Eng., 2013, 46, p 151–165. doi:10.1016/j.compositesb.2012.10.003

    Article  Google Scholar 

  10. Y. Wei, J. Zhang, P. Mouritza, B.N. Cox, Y. Zheng, X. Cheng et al., Effect of Stitching on Plain and Open-Hole Strength of CFRP Laminates, Compos. A Appl. Sci. Manuf., 2008, 25, p 473–484. doi:10.1016/S1359-835X(99)00056-1

    Google Scholar 

  11. F. Aymerich, R. Onnis, and P. Priolo, Analysis of the Effect of Stitching on the Fatigue Strength of Single-Lap Composite Joints, Compos. Sci. Technol., 2006, 66, p 166–175. doi:10.1016/j.compscitech.2005.04.023

    Article  Google Scholar 

  12. F. Larsson, Damage Tolerance of a Stitched Carbon/Epoxy Laminate, Compos. A Appl. Sci. Manuf., 1997, 28, p 923–934. doi:10.1016/S1359-835X(97)00063-8

    Article  Google Scholar 

  13. H. Kong, P. Mouritza, and R. Paton, Tensile Extension Properties and Deformation Mechanisms of Multiaxial Non-crimp Fabrics, Compos. Struct., 2004, 66, p 249–259. doi:10.1016/j.compstruct.2004.04.046

    Article  Google Scholar 

  14. K. Vallons, G. Adolphs, P. Lucas, S.V. Lomov, and I. Verpoest, The Influence of the Stitching Pattern on the Internal Geometry, Quasi-Static and Fatigue Mechanical Properties of Glass Fibre Non-crimp Fabric Composites, Compos. A Appl. Sci. Manuf., 2014, 56, p 272–279. doi:10.1016/j.compositesa.2013.10.015

    Article  Google Scholar 

  15. S. Laustsen, E. Lund, L. Kühlmeier, and O.T. Thomsen, Interfibre Failure Characterisation of Unidirectional and Triax Glass Fibre Non-crimp Fabric Reinforced Epoxy Laminates, Appl. Compos. Mater., 2014, 22, p 51–79. doi:10.1007/s10443-014-9391-6

    Article  Google Scholar 

  16. K. Vallons, S.V. Lomov, and I. Verpoest, Fatigue and Post-Fatigue Behaviour of Carbon/Epoxy Non-crimp Fabric Composites, Compos. A Appl. Sci. Manuf., 2009, 40, p 251–259. doi:10.1016/j.compositesa.2008.12.001

    Article  Google Scholar 

  17. D. Mattsson, R. Joffe, and J. Varna, Methodology for Characterization of Internal Structure Parameters Governing Performance in NCF Composites, Compos. B Eng., 2007, 38, p 44–57. doi:10.1016/j.compositesb.2006.04.004

    Article  Google Scholar 

  18. A. Riccio, M. Zarrelli, and N. Tessitore, A numerical Model for Delamination Growth Simulation in Non-crimp Fabric Composites, Compos. Sci. Technol., 2007, 67, p 3345–3359. doi:10.1016/j.compscitech.2007.03.029

    Article  Google Scholar 

  19. Standarda. D5528-01 2001, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites, Am. Soc. Test Mater., 2014, p 1–13. doi:10.1520/D5528-13.2

  20. L. Amaral, L. Yao, R. Alderliesten, and R. Benedictus, The Relation Between the Strain Energy Release in Fatigue and Quasi-Static Crack Growth, Eng. Fract. Mech., 2015, 145, p 86–97. doi:10.1016/j.engfracmech.2015.07.018

    Article  Google Scholar 

  21. A. Dathe, A.M. Tarquis, and E. Perrier, Multifractal Analysis of the Pore- and Solid-Phases in Binary Two-Dimensional Images of Natural Porous Structures, Geoderma, 2006, 134, p 318–326. doi:10.1016/j.geoderma.2006.03.024

    Article  Google Scholar 

  22. L.R. de O Hein, K.A. de Campos, P.C.R. de Oliveira Caltabiano, and A.L. Horovistiz, 3-D reconstruction by Extended Depth-of-Field in Failure Analysis—Case Study I: Qualitative Fractographic Investigation of Fractured Bolts in a Partial Valve, Eng. Fail Anal. 2010, 17, p 515–520. doi:10.1016/j.engfailanal.2009.09.012.

  23. ASTM, Standard Test Method for Tensile Strength and Young’ s Modulus of Fibers 1, 2013, 03, p 1–10. doi:10.1520/C1557-03R13.2

  24. A. Tugrul Seyhan, M. Tanoglu, K. Schulte, Mode I and Mode II Fracture Toughness of E-Glass Non-crimp Fabric/Carbon Nanotube (CNT) Modified Polymer Based Composites. Eng. Fract. Mech. 2008, 75, 5151–5162. doi:10.1016/j.engfracmech.2008.08.003

  25. K.P. Plain and L. Tong, Traction Law for Inclined Through-Thickness Reinforcement Using a Geometrical Approach, Compos. Struct., 2009, 88, p 558–569. doi:10.1016/j.compstruct.2008.06.002

    Article  Google Scholar 

  26. V.A. Pastoukhov and H.J.C. Voorwald, Introdução à Mecânica da Integridade Estrutural, Editora UNESP, São Paulo, 1995

    Google Scholar 

  27. G.C. Sih and H. Liebowitz, On the Griffith Energy Criterion for Brittle Fracture, Int. J. Solids Struct., 1967, 3, p 1–22. doi:10.1016/0020-7683(67)90041-8

    Article  Google Scholar 

  28. B. Jacques, J. Devaux, R. Legras, and E. Nield, Reactions Induced by Triphenyl Phosphite Addition During Melt Mixing of Poly(Ethylene Terephthalate)/Poly(Butylene Terephthalate) Blends: Influence of Phosphite Structure and Polyester Chain-End Concentration, Polymer (Guildf), 1996, 37, p 4085–4097. doi:10.1016/0032-3861(96)00251-0

    Article  Google Scholar 

  29. D.V. Vezenov, A.V. Zhuk, G.M. Whitesides, and C.M. Lieber, Chemical Force Spectroscopy in Heterogeneous Systems: Intermolecular Interactions Involving Epoxy Polymer, Mixed Monolayers, and Polar Solvents Chemical Force Spectroscopy in Heterogeneous Systems: Intermolecular Interactions Involving Epoxy Polymer, PoLAR, 2002, p 10578–10588. doi:10.1021/ja025951m

  30. T. Brocks, M. Odila, H. Cioffi, H. Jacobus, and C. Voorwald, Applied Surface Science Effect of Fiber Surface on Flexural Strength in Carbon Fabric Reinforced Epoxy Composites, Appl. Surf. Sci., 2013, 274, p 210–216. doi:10.1016/j.apsusc.2013.03.018

    Article  Google Scholar 

  31. M.Y. Shiino, R.C. Alderliesten, M. Vicente, M. Odila, and H. Cioffi, A Brief Discussion on (Pure Mode I) Fatigue Crack Growth Rate Data in 5HS Weave Fabric Composites: Evaluation of Empirical Relations. Int. J. Fatigue, 2016, 84, p 97–103

    Article  Google Scholar 

  32. Z. Suo, G. Bao, and B. Fan, Delamination R-Curve Phenomena Due to Damage, J. Mech. Phys. Solids, 1992, 40, p 1–16

    Article  Google Scholar 

  33. D. Purslow, Matrix Fractography of Fibre-Reinforced Epoxy Composites, Composites, 1986, 17, p 289–303. doi:10.1016/0010-4361(86)90746-9

    Article  Google Scholar 

  34. E. Marklund, L.E. Asp, and R. Olsson, Transverse Strength of Unidirectional Non-crimp Fabric Composites: Multiscale Modelling, Compos. B Eng., 2014, 65, p 47–56. doi:10.1016/j.compositesb.2014.01.053

    Article  Google Scholar 

  35. A. Noy, C.D. Frisbie, L.F. Rozsnyai, M.S. Wrighton, and C.M. Lieber, Chemical Force Microscopy—Exploiting Chemically-Modified Tips To Quantify Adhesion, Friction, and Functional-Group Distributions in Molecular Assemblies, J. Am. Chem. Soc., 1995, 117, p 7943–7951. doi:10.1021/ja00135a012

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance of FAPESP, through Process Numbers 2012/07646-0 and 2011/01937-0, and IEAMar/UNESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Yutaka Shiino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiino, M.Y., Pelosi, T.S., Cioffi, M.O.H. et al. The Role of Stitch Yarn on the Delamination Resistance in Non-crimp Fabric: Chemical and Physical Interpretation. J. of Materi Eng and Perform 26, 978–986 (2017). https://doi.org/10.1007/s11665-016-2460-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2460-2

Keywords

Navigation