Skip to main content
Log in

3D Bioprinted Integrated Osteochondral Scaffold-Mediated Repair of Articular Cartilage Defects in the Rabbit Knee

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Objective

To demonstrate that a 3D-bioprinted integrated osteochondral scaffold can provide improved repair of articular cartilage defects in the rabbit knee compared to that reported for traditional tissue-engineering methods.

Results

Bone marrow mesenchymal stem cells were differentiated into osteoblasts and chondrocytes as seed cells and mixed with the corresponding bone and cartilage scaffold materials. An integrated osteochondral biphasic scaffold was fabricated via 3D-bioprinting technology through successive natural overlays of the printed material and used to repair full-thickness articular cartilage defects in the rabbit knee. Histological and biomechanical assessment of repaired tissue at 6 months post-transplantation showed almost complete repair of injured articular surfaces and presence of hyaline cartilage. A boundary existed between the transition and repair zones. The Wakitani histological score was 5.50 ± 2.07 points; maximum load was 183.11 ± 35.20 N. Repaired cartilage was integrated firmly with the subchondral bone and almost assimilated with surrounding cartilage and bone tissues.

Conclusion

The 3D bioprinted integrated osteochondral scaffold achieved double bionic effects on the scaffold composition and structure, and it is expected to offer a new strategy for articular cartilage repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baghaban, E. M., & Malakooty, P. E. (2014). Mesenchymal stem cells as a potent cell source for articular cartilage regeneration. World Journal of Stem Cells,6, 344–354.

    Article  Google Scholar 

  2. Gratz, K. R., Wong, V. W., Chen, A. C., Fortier, L. A., Nixon, A. J., & Sah, R. L. (2006). Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: Tensile modulus of repair tissue and integration with host cartilage. Journal of Biomechanics,39, 138–146.

    Article  Google Scholar 

  3. Jiang, J., Tang, A., Ateshian, G. A., Guo, X. E., Hung, C. T., & Lu, H. H. (2010). Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Annals of Biomedical Engineering,38, 2183–2196.

    Article  Google Scholar 

  4. Biao-Qi, C., Ranjith, K., Ai-Zheng, C., Ding-Zhu, Y., Xiao-Xia, C., Ni-Na, J., et al. (2017). Investigation of silk fibroin nanoparticle-decorated poly(l-lactic acid) composite, scaffolds for osteoblast growth and differentiation. International Journal of Nanomedicine,12, 1877–1890.

    Article  Google Scholar 

  5. Yang, Q., Peng, J., Guo, Q., Huang, J., Zhang, L., Yao, J., et al. (2008). A cartilage EMC-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials,29, 2378–2387.

    Article  Google Scholar 

  6. Melissa, L. M., Greet, M., Jessica, R., Pascal, G., Petra, H., Peter, C., et al. (2018). Stem cells for cartilage repair: Preclinical studies and insights in translational animal models and outcome measures. Stem Cells International,2018, 9079538.

    Google Scholar 

  7. Harley, B. A., Lynn, A. K., Wissner-Gross, Z., Bonfield, W., Yannas, I. V., & Gibson, L. J. (2010). Design of a multiphase osteochondral scaffold iii: Fabrication of layered scaffolds with continuous interfaces. Journal of Biomedical Materials Research, Part A,92A, 1078–1093.

    Google Scholar 

  8. Kankala, R. K., Zhu, K., Li, J., Wang, C. S., Wang, S. B., & Chen, A. Z. (2017). Fabrication of arbitrary 3d components in cardiac surgery: From macro-, micro- to nanoscale. Biofabrication,9, 032002.

    Article  Google Scholar 

  9. Neary, M., Barron, V., Barry, F., Shannon, F., & Murphy, M. (2018). Cartilage repair in a rabbit model: Development of a novel subchondral defect and assessment of early cartilage repair using rabbit mesenchymal stem cell seeded scaffold. Irish Journal of Medical Science,183, S249–S250.

    Google Scholar 

  10. Park, J. Y., Choi, J. C., Shim, J. H., Lee, J. S., & Cho, D. W. (2014). A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication,6, 035004.

    Article  Google Scholar 

  11. O’Reilly, A., & Kelly, D. J. (2016). A computational model of osteochondral defect repair following implantation of stem cell-laden multiphase scaffolds. Tissue Engineering Part A,23, 30–42.

    Article  Google Scholar 

  12. Georgi, N., Van Blitterswijk, C., & Karperien, M. (2014). Mesenchymal stromal/stem cell- or chondrocyte-seeded microcarriers as building blocks for cartilage tissue engineering. Tissue Engineering Part A,20, 2513–2523.

    Article  Google Scholar 

  13. Tritzschiavi, J., Charif, N., Henrionnet, C., De, I. N., Bensoussan, D., Magdalou, J., et al. (2010). Original approach for cartilage tissue engineering with mesenchymal stem cells. BioMedical Materials and Engineering,20, 167–174.

    Google Scholar 

  14. Lam, J., Lu, S., Lee, E. J., Trachtenberg, J. E., Meretoja, V. V., Dahlin, R. L., et al. (2014). Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model. Osteoarthritis and Cartilage,22, 1291–1300.

    Article  Google Scholar 

  15. Meng, Y. H., Zhu, X. H., Yan, L. Y., Zhang, Y., Jin, H. Y., Xia, X., et al. (2016). Bone mesenchymal stem cells improve pregnancy outcome by inducing maternal tolerance to the allogeneic fetus in abortion-prone matings in mouse. Placenta,47, 29–36.

    Article  Google Scholar 

  16. Ma, G., Zhao, J. L., Mao, M., Chen, J., & Liu, Y. P. (2016). Scaffold-based delivery of bone marrow mesenchymal stem cell sheet fragments enhances new bone formation in vivo. Journal of Oral and Maxillofacial Surgery: Official Journal of the American Association of Oral and Maxillofacial Surgeons,75, 92–104.

    Article  Google Scholar 

  17. Yin, H., Wang, Y., Sun, Z., Sun, X., Xu, Y., Li, P., et al. (2016). Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomaterialia,33, 96–109.

    Article  Google Scholar 

  18. Zhang, W. Y., Yang, Y. D., He, C., & Chen, Y. (2004). Isolation culture and esteogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells. Zhejiang Practical Medicine,9, 393–395.

    Google Scholar 

  19. Zhang, W. Y., Yang, Y. D., He, C., & Chen, Y. (2004). Experimental studies of osteogenic and chondrogenic potentiality of rabbit bone marrow-derived mesenchymal stem cells. Modern Medicine Health,20, 2083–2085.

    Google Scholar 

  20. Yadong, Y., Wenyuan, Z., Ying, L., Guojian, F., & Keji, Z. (2014). Scalded skin of rat treated by using fibrin glue combined with allogeneic bone marrow mesenchymal stem cells. Annals of Dermatology,26, 289–295.

    Article  Google Scholar 

  21. Lee, W., Debasitis, J. C., Lee, V. K., Lee, J. H., Fischer, K., Edminster, K., et al. (2009). Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials,30, 1587–1595.

    Article  Google Scholar 

  22. Wakitani, S., Goto, T., Pineda, S. J., Young, R. G., Mansour, J. M., Caplan, A. I., et al. (1994). Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. Journal of Bone and Joint Surgery-American,76, 579–592.

    Article  Google Scholar 

  23. Fragonas, E., Valente, M., Pozzimucelli, M., Toffanin, R., Rizzo, R., Silvestri, F., et al. (2000). Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials,21, 795–801.

    Article  Google Scholar 

  24. Filion, T. M., Li, X., Mason-Savas, A., Kreider, J. M., Goldstein, S. A., Ayers, D. C., et al. (2011). Elastomeric osteoconductive synthetic scaffolds with acquired osteoinductivity expedite the repair of critical femoral defects in rats. Tissue Engineering Part A,17, 503–511.

    Article  Google Scholar 

  25. Jiang, J., Hao, W., Li, Y., Yao, J., Shao, Z., Li, H., et al. (2013). Hydroxyapatite/regenerated silk fibroin scaffold-enhanced osteoinductivity and osteoconductivity of bone marrow-derived mesenchymal stromal cells. Biotechnology Letters,35, 657–661.

    Article  Google Scholar 

  26. Xue, D., Zheng, Q., Zong, C., Li, Q., Li, H., Qian, S., et al. (2010). Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Journal of Biomedical Materials Research, Part A,94A, 259–270.

    Article  Google Scholar 

  27. Araki, S., Imai, S., Ishigaki, H., Mimura, T., Nishizawa, K., Ueba, H., et al. (2015). Improved quality of cartilage repair by bone marrow mesenchymal stem cells for treatment of an osteochondral defect in a cynomolgus macaque model. Acta Orthopaedica,86, 119–126.

    Article  Google Scholar 

  28. Kalson, N. S., Gikas, P. D., & Briggs, T. W. (2010). Current strategies for knee cartilage repair. International Journal of Clinical Practice,64, 1444–1452.

    Article  Google Scholar 

  29. Freed, L. E., Grande, D. A., Lingbin, Z., Emmanual, J., Marquis, J. C., & Langer, R. (2010). Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. Journal of Biomedical Materials Research, Part A,28, 891–899.

    Article  Google Scholar 

  30. Zhang, W., Lian, Q., Li, D., Wang, K., Jin, Z., Bian, W., et al. (2014). cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique. Chinese Journal of Reparative and Reconstructive Surgery,28, 318–324.

    Google Scholar 

  31. Wang, F., Yang, L., Duan, X., Tan, H., & Dai, G. (2008). Study on shape and structure of calcified cartilage zone in normal human knee joint. Chinese Journal of Reparative and Reconstructive Surgery,27, 524–527.

    Google Scholar 

  32. Havelka, S., Horn, V., Spohrová, D., & Valouch, P. (1984). The calcified–noncalcified cartilage interface: The tidemark. Acta Biologica Hungarica,35, 271–279.

    Google Scholar 

  33. Mansfield, J. C., & Winlove, C. P. (2012). A multi-modal multiphoton investigation of microstructure in the deep zone and calcified cartilage. Journal of Anatomy,220, 405–416.

    Article  Google Scholar 

  34. Dua, R., Centeno, J., & Ramaswamy, S. (2014). Augmentation of engineered cartilage to bone integration using hydroxyapatite. Journal of Biomedical Materials Research. Part B, Applied Biomaterials,102, 922–932.

    Article  Google Scholar 

  35. Nosewicz, T. L., Reilingh, M. L., Wolny, M., Dijk, C. N. V., & Schell, H. (2013). Influence of basal support and early loading on bone cartilage healing in press-fitted osteochondral autografts. Knee Surgery, Sports Traumatology, Arthroscopy,22, 1445–1451.

    Google Scholar 

  36. Viti, F., Scaglione, S., Orro, A., & Milanesi, L. (2014). Guidelines for managing data and processes in bone and cartilage tissue engineering. BMC Bioinformatics,15, S14.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Zhejiang Province of China (Nos. LY18H180010, LY17H060011, and LY17H280008), grants from the Zhejiang Provincial Medical Science and Technology Plan Project of China (Nos. 2015KYB092, 2017KY307, 2017KY299, 2017KY303, and 2019KY364), and grants from Zhejiang Provincial Traditional Chinese Medicine Science and Technology Plan Project of China (Nos. 2016ZA044, 2015ZA045, and 2018ZA017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yang, G., Song, Y. et al. 3D Bioprinted Integrated Osteochondral Scaffold-Mediated Repair of Articular Cartilage Defects in the Rabbit Knee. J. Med. Biol. Eng. 40, 71–81 (2020). https://doi.org/10.1007/s40846-019-00481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-019-00481-y

Keywords

Navigation