Skip to main content

Advertisement

Log in

Osteochondral Tissue Engineering Dilemma: Scaffolding Trends in Regenerative Medicine

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Orthopedic surgeons face a lot of difficulties in managing and repairing osteochondral defects. Damaged articular cartilage and the subchondral bone underneath are both present in osteochondral defects. The demands of the bone, cartilage, and the contact between the bone and the cartilage must be taken into consideration while repairing an osteochondral defect. Only palliative, not curative, therapeutic interventions are now available for the healing of osteochondral abnormalities. With its ability to successfully rebuild bone, cartilage, and the junction between bone and cartilage, tissue engineering has been recognized as an effective substitute. In correlation, mechanical stress and physical processes are commonly applied to the osteochondral area. Therefore, the ability of chondrocytes and osteoblasts to regenerate is influenced by bioactive molecules and the physicochemical characteristics of the surrounding matrix. The treatment of osteochondral disorders is said to benefit from the use of stem cells as an alternative intervention. In the field of tissue engineering, various approaches have been used such as the direct implantation of scaffolding materials at the site of tissue injury in patients, either alone or loaded with cells and bioactive molecules at the target site to imitate the natural extracellular matrix. Despite the extensive use and advancements of tissue-engineered biomaterials such as natural and synthetic polymer-based scaffolds, their repair capacity is limited due to challenges in combating antigenicity, designed to simulate in vivo microenvironment, and conducting mechanical or metabolic characteristics comparable to native organs/tissues. This study explores numerous osteochondral tissue engineering methodologies focusing on scaffold design, material varieties, manufacturing techniques, and functional features. This review is focused on recent breakthroughs in bioactive scaffolds that aid osteogenic and chondrogenic differentiation for bone and cartilage repair. The topic will cover fundamental anatomy, osteochondral repair methodologies and obstacles, cell selection, biochemical variables, and bioactive materials, as well as the design and manufacture of bioactive scaffolds. Additionally, we focus on the concept and construction of decellularized scaffolds, and the fabrication of dECM scaffolds in tissue engineering from various skin, bone, nerve, heart tissue, lung, liver, and kidney, and their application in osteochondral regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Declaration of data availability does not correspond to this type of publication.

Code Availability

Not applicable.

References

  1. Blahnova, V., Vocetkova, K., Hlinkova, J., Divin, R., Amler, E., & Filova, E. (2020). PCL Scaffold for Osteochondral Defect Treatment. In Key Engineering Materials; ; Vol. 834 KEM.

  2. Hannon, C. P., Smyth, N. A., Murawski, C. D., Savage-Elliott, I., Deyer, T. W., Calder, J. D. F., & Kennedy, J. G. Osteochondral Lesions of the Talus: Aspects of Current Management.Bone Jt. J. 2014, 96 B, https://doi.org/10.1302/0301-620X.96B2.31637

  3. Ye, K., Di Bella, C., Myers, D. E., & Choong, P. F. M. (2014). The Osteochondral Dilemma: Review of Current Management and Future Trends. ANZ J. Surg. 84.

  4. Gomoll, A. H., Madry, H., Knutsen, G., van Dijk, N., Seil, R., Brittberg, M., & Kon, E. (2010). The subchondral bone in articular cartilage repair: Current problems in the Surgical Management. Knee Surgery Sport Traumatol Arthrosc, 18, https://doi.org/10.1007/s00167-010-1072-x

  5. Barceló, X., Scheurer, S., Lakshmanan, R., Moran, C. J., Freeman, F., & Kelly, D. J. (2021). 3D bioprinting for Meniscus tissue Engineering: A review of Key Components, recent Developments and Future Opportunities. J 3D Print Med, 5, https://doi.org/10.2217/3dp-2021-0017

  6. Jung, J. P., Bhuiyan, D. B., & Ogle, B. M. (2016). Solid Organ Fabrication: Comparison of Decellularization to 3D Bioprinting.Biomater. Res.20.

  7. Kim, Y. S., Majid, M., Melchiorri, A. J., & Mikos, A. G. (2019). Applications of decellularized extracellular matrix in bone and cartilage tissue Engineering. Bioeng Transl Med, 4, https://doi.org/10.1002/btm2.10110

  8. Pati, F., Song, T. H., Rijal, G., Jang, J., Kim, S. W., & Cho, D. W. (2015). Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials, 37, https://doi.org/10.1016/j.biomaterials.2014.10.012

  9. Larson, B. L., Yu, S. N., Park, H., Estes, B. T., Moutos, F. T., Bloomquist, C. J., Wu, P. B., Welter, J. F., Langer, R., Guilak, F., et al. (2019). Chondrogenic, hypertrophic, and Osteochondral differentiation of human mesenchymal stem cells on three-dimensionally woven scaffolds. Journal Of Tissue Engineering And Regenerative Medicine, 13, https://doi.org/10.1002/term.2899

  10. Klontzas, M. E., Kenanidis, E. I., Heliotis, M., Tsiridis, E., & Mantalaris, A. (2015). Bone and Cartilage Regeneration with the Use of Umbilical Cord Mesenchymal Stem Cells.Expert Opin. Biol. Ther.15.

  11. Bellavia, D., Veronesi, F., Carina, V., Costa, V., Raimondi, L., De Luca, A., Alessandro, R., Fini, M., & Giavaresi, G. (2018). Gene Therapy for Chondral and Osteochondral Regeneration: Is the future now? Cellular And Molecular Life Sciences, 75, https://doi.org/10.1007/s00018-017-2637-3

  12. Dang, J. M., & Leong, K. W. (2006). Natural Polymers for Gene Delivery and Tissue Engineering.Adv. Drug Deliv. Rev.58.

  13. Dhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011.

  14. Mitra, J., Tripathi, G., Sharma, A., & Basu, B. (2013). Scaffolds for Bone Tissue Engineering: Role of Surface Patterning on Osteoblast Response.RSC Adv.3.

  15. Shin, S. H., Purevdorj, O., Castano, O., Planell, J. A., & Kim, H. W. (2012). A Short Review: Recent Advances in Electrospinning for Bone Tissue Regeneration.J. Tissue Eng.3.

  16. Han, F., Wang, J., Ding, L., Hu, Y., Li, W., Yuan, Z., Guo, Q., Zhu, C., Yu, L., Wang, H. (2020). Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Front. Bioeng. Biotechnol. 8.

  17. Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue Engineering and Regenerative Medicine: History, Progress, and Challenges. Annu. Rev. Chem. Biomol. Eng. 2.

  18. Pina, S., Ribeiro, V. P., Marques, C. F., Maia, F. R., Silva, T. H., Reis, R. L., & Oliveira, J. M. (2019). Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials (Basel). 12.

  19. Furth, M. E., Atala, A., & Van Dyke, M. E. (2007). Smart Biomaterials Design for tissue Engineering and Regenerative Medicine. Biomaterials, 28, https://doi.org/10.1016/j.biomaterials.2007.07.042

  20. Macías, I., Alcorta-Sevillano, N., Rodríguez, C. I., & Infante, A. (2020). Osteoporosis and the Potential of Cell-Based Therapeutic Strategies. Int. J. Mol. Sci. 21.

  21. Taylor, D. A., Sampaio, L. C., Ferdous, Z., Gobin, A. S., & Taite, L. J. (2018). Decellularized Matrices in Regenerative Medicine.Acta Biomater.74.

  22. Gao, X., Wang, Y., Chen, J., & Peng, J. (2013). The role of peripheral nerve ECM components in the tissue Engineering nerve construction. Reviews In The Neurosciences, 24, https://doi.org/10.1515/revneuro-2013-0022

  23. Gentilin, E., D’Angelo, E., Agostini, M., & Astolfi, L. (2022). Decellularized Normal and Cancer Tissues as Tools for Cancer Research.Cancer Gene Ther.29.

  24. Yu, Z., Lili, J., Tiezheng, Z., Li, S., Jianzhuang, W., Haichao, D., Kedong, S., & Tianqing, L. (2019). Development of decellularized Meniscus extracellular matrix and Gelatin/Chitosan scaffolds for Meniscus tissue Engineering. Biomedical Materials And Engineering, 30, https://doi.org/10.3233/BME-191038

  25. Ghazanfari, S., Alberti, K. A., Xu, Q., & Khademhosseini, A. (2019). Evaluation of an Elastic Decellularized Tendon-Derived Scaffold for the vascular tissue Engineering Application. J Biomed Mater Res - Part A, 107, https://doi.org/10.1002/jbm.a.36622

  26. Parmaksiz, M., Elçin, A. E., & Elçin, Y. M. (2019). Decellularized bovine small intestinal Submucosa-PCL/Hydroxyapatite-Based Multilayer Composite Scaffold for hard tissue repair. Mater Sci Eng C, 94, https://doi.org/10.1016/j.msec.2018.10.011

  27. Grant, R., Hallett, J., Forbes, S., Hay, D., & Callanan, A. (2019). Blended Electrospinning with Human Liver Extracellular Matrix for Engineering New hepatic microenvironments. Scientific Reports, 9, https://doi.org/10.1038/s41598-019-42627-7

  28. Cho, A. N., Jin, Y., Kim, S., Kumar, S., Shin, H., Kang, H. C., & Cho, S. W. (2019). Aligned Brain Extracellular Matrix promotes differentiation and myelination of Human-Induced Pluripotent Stem Cell-Derived Oligodendrocytes. Acs Applied Materials & Interfaces, 11, https://doi.org/10.1021/acsami.9b03242

  29. Stevens, M. M. (2008). Biomaterials for Bone Tissue Engineering. Mater. Today 11.

  30. Brokesh, A. M., & Gaharwar, A. K. (2020). Inorganic Biomaterials for Regenerative Medicine. Acs Applied Materials & Interfaces, 12, https://doi.org/10.1021/acsami.9b17801

  31. Babuska, V., Moztarzadeh, O., Kubikova, T., Moztarzadeh, A., Hrusak, D., & Tonar, Z. (2016). Evaluating the osseointegration of Nanostructured Titanium Implants in Animal Models: Current experimental methods and perspectives (review). Biointerphases, 11, https://doi.org/10.1116/1.4958793

  32. Dong, R., Ma, P. X., & Guo, B. (2020). Conductive Biomaterials for Muscle Tissue Engineering. Biomaterials 229.

  33. Zafar, M. J., Zhu, D., & Zhang, Z. (2019). 3D Printing of Bioceramics for Bone Tissue Engineering. Materials (Basel). 12.

  34. Jell, G., & Stevens, M. M. (2006). Gene Activation by Bioactive Glasses. In Proceedings of the Journal of Materials Science: Materials in Medicine; ; Vol. 17.

  35. Zhou, Y., Wu, C., & Chang, J. (2019). Bioceramics to Regulate Stem Cells and Their Microenvironment for Tissue Regeneration.Mater. Today24.

  36. Liu, J., Ruan, J., Chang, L., Yang, H., & Ruan, W. (2017). Porous Nb-Ti-Ta Alloy Scaffolds for bone tissue Engineering: Fabrication, Mechanical Properties and in Vitro/Vivo biocompatibility. Mater Sci Eng C, 78, https://doi.org/10.1016/j.msec.2017.04.088

  37. Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I., & Grigolo, B. (2017). Scaffolds for bone tissue Engineering: State of the art and New Perspectives. Mater Sci Eng C, 78, 1246–1262. https://doi.org/10.1016/j.msec.2017.05.017

    Article  CAS  Google Scholar 

  38. Li, T. T., Zhang, H., Huang, S. Y., Pei, X., Lin, Q., Tian, S., Ma, Z., & Lin, J. H. (2021). Preparation and Property evaluations of PCL/PLA Composite Films. Journal Of Polymer Research, 28, https://doi.org/10.1007/s10965-021-02439-8

  39. Farid, S. B. H., & Osteoinduction (2019). Osteoconduction, and Osseointegration. Bioceramics: For materials Science and Engineering (pp. 77–96). Elsevier.

  40. Hoemann, C. D., Chenite, A., Sun, J., Hurtig, M., Serreqi, A., Lu, Z., Rossomacha, E., & Buschmann, M. D. (2007). Cytocompatible gel formation of Chitosan-Glycerol phosphate solutions supplemented with Hydroxyl Ethyl Cellulose is due to the Presence of Glyoxal. J Biomed Mater Res - Part A, 83, https://doi.org/10.1002/jbm.a.31365

  41. Rozila, I., Azari, P., Munirah, S., Safwani, W. K. Z. W., Pingguan-Murphy, B., & Chua, K. H. (2021). Polycaprolactone-based Scaffolds facilitates osteogenic differentiation of human adipose-derived stem cells in a Co-Culture System. Polymers (Basel), 13, https://doi.org/10.3390/polym13040597

  42. Wang, D. X., He, Y., Bi, L., Qu, Z. H., Zou, J. W., Pan, Z., Fan, J. J., Chen, L., Dong, X., Liu, X. N., et al. (2013). Enhancing the Bioactivity of Poly(Lactic-Co-Glycolic Acid) Scaffold with a Nano-Hydroxyapatite Coating for the treatment of segmental bone defect in a rabbit model. Int J Nanomedicine, 8, https://doi.org/10.2147/IJN.S43706

  43. Wang, C., Huang, W., Zhou, Y., He, L., He, Z., Chen, Z., He, X., Tian, S., Liao, J., Lu, B. (2020). 3D Printing of Bone Tissue Engineering Scaffolds. Bioact. Mater. 5.

  44. Day, A. G. E., Francis, W. R., Fu, K., Pieper, I. L., Guy, O., & Xia, Z. (2018). Osteogenic Potential of Human Umbilical Cord Mesenchymal Stem Cells on Coralline Hydroxyapatite/Calcium Carbonate Microparticles. Stem Cells Int. 2018, https://doi.org/10.1155/2018/4258613

  45. Akbari, M., Tamayol, A., Bagherifard, S., Serex, L., Mostafalu, P., Faramarzi, N., Mohammadi, M. H., & Khademhosseini, A. (2016). Textile Technologies and tissue Engineering: A path toward organ weaving. Adv Healthc Mater, 5, https://doi.org/10.1002/adhm.201500517

  46. Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., Li, B., & Shu, W. (2018). 3D Bioactive Composite Scaffolds for Bone Tissue Engineering.Bioact. Mater.3.

  47. Asti, A., & Gioglio, L. (2014). Natural and Synthetic Biodegradable Polymers: Different Scaffolds for Cell Expansion and Tissue Formation.Int. J. Artif. Organs37.

  48. Liu, S., Jia, Y., Yuan, M., Guo, W., Huang, J., Zhao, B., Peng, J., Xu, W., Lu, S., & Guo, Q. (2017). Repair of Osteochondral Defects Using Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model. Biomed Res. Int. 2017, https://doi.org/10.1155/2017/8760383

  49. Kartikasari, N., Yuliati, A., Listiana, I., Setijanto, D., Suardita, K., Ariani, M. D., & Sosiawan, A. (2016). Characteristic of Bovine Hydroxyapatite-Gelatin-Chitosan Scaffolds as Biomaterial Candidate for Bone Tissue Engineering. In Proceedings of the IECBES - IEEE-EMBS Conference on Biomedical Engineering and Sciences; 2016.

  50. Chamieh, F., Collignon, A. M., Coyac, B. R., Lesieur, J., Ribes, S., Sadoine, J., Llorens, A., Nicoletti, A., Letourneur, D., Colombier, M. L., et al. (2016). Accelerated Craniofacial Bone regeneration through dense collagen gel scaffolds seeded with Dental Pulp Stem cells. Scientific Reports, 6, https://doi.org/10.1038/srep38814

  51. Gentile, P., Nandagiri, V. K., Daly, J., Chiono, V., Mattu, C., Tonda-Turo, C., Ciardelli, G., & Ramtoola, Z. (2016). Localised controlled release of simvastatin from porous chitosan-gelatin Scaffolds Engrafted with Simvastatin loaded PLGA-Microparticles for bone tissue Engineering Application. Mater Sci Eng C, 59, https://doi.org/10.1016/j.msec.2015.10.014

  52. Saravanan, S., Leena, R. S., & Selvamurugan, N. (2016). Chitosan Based Biocomposite Scaffolds for bone tissue Engineering. International Journal Of Biological Macromolecules, 93, https://doi.org/10.1016/j.ijbiomac.2016.01.112

  53. Wu, X., Liu, Y., Li, X., Wen, P., Zhang, Y., Long, Y., Wang, X., Guo, Y., Xing, F., & Gao, J. (2010). Preparation of Aligned Porous gelatin scaffolds by unidirectional freeze-drying method. Acta Biomaterialia, 6, https://doi.org/10.1016/j.actbio.2009.08.041

  54. Rajan Unnithan, A., Ramachandra Kurup Sasikala, A., Park, C. H., & Kim, C. S. (2017). A Unique Scaffold for bone tissue Engineering: An osteogenic combination of Graphene Oxide–Hyaluronic acid–chitosan with simvastatin. Journal Of Industrial And Engineering Chemistry, 46, https://doi.org/10.1016/j.jiec.2016.10.029

  55. Balagangadharan, K., Dhivya, S., & Selvamurugan, N. (2017). Chitosan Based Nanofibers in Bone Tissue Engineering.Int. J. Biol. Macromol.104.

  56. Liu, M., Zeng, X., Ma, C., Yi, H., Ali, Z., Mou, X., Li, S., Deng, Y., & He, N. (2017). Injectable Hydrogels for Cartilage and Bone Tissue Engineering.Bone Res.5.

  57. Knudson, C. B. (2003). Hyaluronan and CD44: Strategic Players for Cell-Matrix Interactions during Chondrogenesis and Matrix Assembly.Birth Defects Res. Part C - Embryo Today Rev.69.

  58. Astachov, L., Vago, R., Aviv, M., & Nevo, Z. (2011). Hyaluronan and mesenchymal stem cells: From germ layer to cartilage and bone. Frontiers In Bioscience : A Journal And Virtual Library, 16, https://doi.org/10.2741/3687

  59. Zhao, L., Weir, M. D., & Xu, H. H. K. (2010). An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue Engineering. Biomaterials, 31, https://doi.org/10.1016/j.biomaterials.2010.05.017

  60. Teixeira, G. Q., Pereira, C. L., Ferreira, J. R., Maia, A. F., Gomez-Lazaro, M., Barbosa, M. A., Neidlinger-Wilke, C., & Gonçalves, R. M. (1976). Immunomodulation of Human Mesenchymal Stem/Stromal Cells in Intervertebral Disc Degeneration: Insights from a Proinflammatory/Degenerative Ex Vivo Model. Spine (Phila. Pa 2017, https://doi.org/10.1097/brs.0000000000002494

  61. Zarrintaj, P., Manouchehri, S., Ahmadi, Z., Saeb, M. R., Urbanska, A. M., Kaplan, D. L., & Mozafari, M. (2018). Agarose-Based Biomaterials for Tissue Engineering. Carbohydr. Polym. 187.

  62. Pina, S., Ferreira, J. M. F., & Brushite-Forming Mg- (2010). Zn- and Sr-Substituted bone cements for clinical applications. Materials (Basel), 3, https://doi.org/10.3390/ma3010519

  63. Tomoaia, G., Mocanu, A., Vida-Simiti, I., Jumate, N., Bobos, L. D., Soritau, O., & Tomoaia-Cotisel, M. (2014). Silicon Effect on the composition and structure of Nanocalcium Phosphates: In Vitro Biocompatibility to human osteoblasts. Mater Sci Eng C, 37, https://doi.org/10.1016/j.msec.2013.12.027

  64. Vallet-Regi, M., & Arcos, D. (2005). Silicon Substituted Hydroxyapatites. A method to upgrade calcium phosphate based implants. Journal Of Materials Chemistry, 15, https://doi.org/10.1039/b414143a

  65. Kose, N., Otuzbir, A., Pekşen, C., Kiremitçi, A., & Doǧan, A. A. (2013). Silver Ion-Doped Calcium Phosphate-Based Ceramic Nanopowder-Coated Prosthesis Increased Infection Resistance Basic Research. In Proceedings of the Clinical Orthopaedics and Related Research; ; Vol. 471.

  66. Mestres, G., Le Van, C., & Ginebra, M. P. (2012). Silicon-Stabilized α-Tricalcium phosphate and its use in a calcium phosphate cement: Characterization and cell response. Acta Biomaterialia, 8, https://doi.org/10.1016/j.actbio.2011.11.021

  67. Miguez-Pacheco, V., Hench, L. L., & Boccaccini, A. R. (2015). Bioactive Glasses beyond Bone and Teeth: Emerging Applications in Contact with Soft Tissues. Acta Biomater. 13.

  68. Sachlos, E., Czernuszka, J. T., Gogolewski, S., & Dalby, M. (2003). Making Tissue Engineering Scaffolds Work. Review on the Application Ofsolid Freeform Fabrication Technology to the Production of Tissue Engineeringscaffolds.Eur. Cells Mater.5.

  69. Bhattacharya, R., Kundu, B., Nandi, S. K., & Basu, D. (2013). Systematic Approach to treat chronic osteomyelitis through localized drug delivery system: Bench to Bed Side. Mater Sci Eng C, 33, https://doi.org/10.1016/j.msec.2013.05.036

  70. Dorati, R., DeTrizio, A., Modena, T., Conti, B., Benazzo, F., Gastaldi, G., & Genta, I. (2017). Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy. Pharmaceuticals 10.

  71. Chocholata, P., Kulda, V., & Babuska, V. (2019). Fabrication of Scaffolds for Bone-Tissue Regeneration. Materials (Basel). 12.

  72. Yu, Y., Alkhawaji, A., Ding, Y., & Mei, J. (2016). Decellularized Scaffolds in Regenerative Medicine. Oncotarget 7.

  73. Xiao, D., Zhang, J., Zhang, C., Barbieri, D., Yuan, H., Moroni, L., & Feng, G. (2020). The Role of Calcium Phosphate Surface Structure in Osteogenesis and the Mechanisms Involved. Acta Biomater. 106.

  74. Lu, Y., Li, M., Long, Z., Di Yang; Guo, S., Li, J., Liu, D., Gao, P., Chen, G., Lu, X., et al. (2019). Collagen/β-TCP composite as a bone-graft substitute for posterior spinal Fusion in rabbit model: A comparison study. Biomedical Materials, 14, https://doi.org/10.1088/1748-605X/ab1caf

  75. Ebrahimi, M., Botelho, M. G., & Dorozhkin, S. V. (2017). Biphasic Calcium Phosphates Bioceramics (HA/TCP): Concept, Physicochemical Properties and the Impact of Standardization of Study Protocols in Biomaterials Research. Mater. Sci. Eng. C 71.

  76. Li, X., Song, T., Chen, X., Wang, M., Yang, X., Xiao, Y., & Zhang, X. (2019). Osteoinductivity of porous biphasic calcium phosphate ceramic spheres with Nanocrystalline and their efficacy in guiding bone regeneration. Acs Applied Materials & Interfaces, 11, https://doi.org/10.1021/acsami.8b18525

  77. Yanagisawa, T., Yasuda, A., Makkonen, R. I., & Kamakura, S. (2020). Influence of pre-freezing conditions of Octacalcium phosphate and collagen composite for reproducible appositional bone formation. J Biomed Mater Res - Part B Appl Biomater, 108, https://doi.org/10.1002/jbm.b.34613

  78. Wang, C., Jeong, K. J., Park, H. J., Lee, M., Ryu, S. C., Hwang, D. Y., Nam, K. H., Han, I. H., & Lee, J. (2020). Synthesis and formation mechanism of bone Mineral, Whitlockite Nanocrystals in Tri-Solvent System. Journal Of Colloid And Interface Science, 569, https://doi.org/10.1016/j.jcis.2020.02.072

  79. Shafiee, A., Soleimani, M., Chamheidari, G. A., Seyedjafari, E., Dodel, M., Atashi, A., & Gheisari, Y. (2011). Electrospun Nanofiber-Based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res - Part A, A, 99. https://doi.org/10.1002/jbm.a.33206

    Article  CAS  Google Scholar 

  80. Coburn, J. M., Gibson, M., Monagle, S., Patterson, Z., & Elisseeff, J. H. (2012). Bioinspired Nanofibers Support Chondrogenesis for Articular Cartilage Repair. Proc. Natl. Acad. Sci. U. S. A. 109, https://doi.org/10.1073/pnas.1121605109

  81. Li, W. J., Danielson, K. G., Alexander, P. G., & Tuan, R. S. (2003). Biological Response of Chondrocytes cultured in Three-Dimensional Nanofibrous Poly(ε-Caprolactone) scaffolds. J Biomed Mater Res - Part A, 67, https://doi.org/10.1002/jbm.a.10101

  82. Schagemann, J. C., Paul, S., Casper, M. E., Rohwedel, J., Kramer, J., Kaps, C., Mittelstaedt, H., Fehr, M., & Reinholz, G. G. (2013). Chondrogenic Differentiation of Bone Marrow-Derived Mesenchymal Stromal Cells via Biomimetic and Bioactive Poly-ε-Caprolactone Scaffolds. J. Biomed. Mater. Res. - Part A 101 A, https://doi.org/10.1002/jbm.a.34457

  83. Musumeci, G., Castrogiovanni, P., Leonardi, R., Trovato, F. M., Szychlinska, M. A., Di Giunta, A., Loreto, C., & Castorina, S. (2014). New perspectives for articular cartilage repair treatment through tissue Engineering: A contemporary review. World J Orthop, 5, https://doi.org/10.5312/wjo.v5.i2.80

  84. Tsuchiya, S., Honda, M. J., Shinohara, Y., Saito, M., & Ueda, M. (2008). Collagen type I Matrix affects Molecular and Cellular Behavior of purified Porcine Dental follicle cells. Cell And Tissue Research, 331, https://doi.org/10.1007/s00441-007-0532-1

  85. Zhao, C., Qazvini, N. T., Sadati, M., Zeng, Z., Huang, S., De La Lastra, A. L., Zhang, L., Feng, Y., Liu, W., Huang, B., et al. (2019). A PH-Triggered, Self-Assembled, and Bioprintable Hybrid Hydrogel Scaffold for mesenchymal stem cell based bone tissue Engineering. Acs Applied Materials & Interfaces, 11, https://doi.org/10.1021/acsami.8b19094

  86. Müllner, M. (2019). Functional Natural and Synthetic Polymers.Macromol. Rapid Commun.40.

  87. Mahmoudi Saber, M. (2019). Strategies for Surface Modification of Gelatin-Based Nanoparticles.Colloids Surfaces B Biointerfaces183.

  88. Sharmila, G., Muthukumaran, C., Kirthika, S., Keerthana, S., Kumar, N. M., & Jeyanthi, J. (2020). Fabrication and characterization of Spinacia Oleracea Extract Incorporated Alginate/Carboxymethyl Cellulose Microporous Scaffold for bone tissue Engineering. International Journal Of Biological Macromolecules, 156, https://doi.org/10.1016/j.ijbiomac.2020.04.059

  89. Ramesh, N., Moratti, S. C., & Dias, G. J. (2018). Hydroxyapatite–Polymer Biocomposites for Bone Regeneration: A Review of Current Trends. J. Biomed. Mater. Res. - Part B Appl. Biomater. 106.

  90. Filová, E., Rampichová, M., Litvinec, A., Držík, M., Míčková, A., Buzgo, M., Košťáková, E., Martinová, L., Usvald, D., Prosecká, E., et al. (2013). Pharmaceutical Nanotechnology A Cell-Free Nanofiber Composite Scaffold regenerated Osteochondral defects in Miniature Pigs. International Journal Of Pharmaceutics, 447, https://doi.org/10.1016/j.ijpharm.2013.02.056

  91. Zhang, S., Chen, L., Jiang, Y., Cai, Y., Xu, G., Tong, T., Zhang, W., Wang, L., Ji, J., Shi, P., et al. (2013). Bi-Layer Collagen/Microporous Electrospun Nanofiber Scaffold improves the Osteochondral Regeneration. Acta Biomaterialia, 9, https://doi.org/10.1016/j.actbio.2013.04.003

  92. Koziel, L., Wuelling, M., Schneider, S., & Vortkamp, A. (2005). Gli3 Acts as a repressor downstream of Ihh in regulating two distinct steps of chondrocyte differentiation. Development, 132, https://doi.org/10.1242/dev.02097

  93. Maehara, H., Sotome, S., Yoshii, T., Torigoe, I., Kawasaki, Y., Sugata, Y., Yuasa, M., Hirano, M., Mochizuki, N., Kikuchi, M., et al. (2010). Repair of large Osteochondral defects in rabbits using porous Hydroxyapatite/Collagen (HAp/Col) and fibroblast growth Factor-2 (FGF-2). Journal Of Orthopaedic Research, 28, https://doi.org/10.1002/jor.21032

  94. Nukavarapu, S. P., & Dorcemus, D. L. (2013). Osteochondral Tissue Engineering: Current Strategies and Challenges.Biotechnol. Adv.31.

  95. Vyas, C., Mishbak, H., Cooper, G., Peach, C., Pereira, R. F., & Bartolo, P. (2020). Biological Perspectives and current biofabrication strategies in Osteochondral tissue Engineering. Biomanufacturing Rev, 5, https://doi.org/10.1007/s40898-020-00008-y

  96. Keeney, M., & Pandit, A. (2009). The Osteochondral Junction and Its Repair via Bi-Phasic Tissue Engineering Scaffolds.Tissue Eng. - Part B Rev.15.

  97. Parivatphun, T., Sangkert, S., Kokoo, R., Khangkhamano, M., & Meesane, J. (2022). Biphasic scaffolds of polyvinyl alcohol with Silk Fibroin for oral and maxillofacial surgery based on mimicking materials design: Fabrication, characterization, Properties. Journal Materials Science, 57, https://doi.org/10.1007/s10853-021-06718-z

  98. Tang, G., Zhang, H., Zhao, Y., Zhang, Y., Li, X., & Yuan, X. (2012). Preparation of PLGA Scaffolds with graded pores by using a Gelatin-Microsphere Template as Porogen. Journal Of Biomaterials Science, Polymer Edition, 23, https://doi.org/10.1163/156856211X614185

  99. Raeisdasteh Hokmabad, V., Davaran, S., Ramazani, A., & Salehi, R. (2017). Design and Fabrication of Porous Biodegradable Scaffolds: A Strategy for Tissue Engineering. J. Biomater. Sci. Polym. Ed. 28.

  100. Salonius, E., Muhonen, V., Lehto, K., Järvinen, E., Pyhältö, T., Hannula, M., Aula, A. S., Uppstu, P., Haaparanta, A. M., Rosling, A., et al. (2019). And Poly(Lactide-Co-Glycolide) with Bioactive Glass Fibres demonstrate Insufficient Bone Repair in Lapine Osteochondral defects. Journal Of Tissue Engineering And Regenerative Medicine, 13, https://doi.org/10.1002/term.2801. Gas-Foamed Poly(Lactide-Co-Glycolide).

  101. Sempertegui, N. D., Narkhede, A. A., Thomas, V., & Rao, S. S. (2018). A Combined Compression Molding, Heating, and leaching process for fabrication of Micro-Porous Poly(ε-Caprolactone) scaffolds. Journal Of Biomaterials Science, Polymer Edition, 29, https://doi.org/10.1080/09205063.2018.1498719

  102. Liao, J., Xu, B., Zhang, R., Fan, Y., Xie, H., & Li, X. (2020). Applications of Decellularized Materials in Tissue Engineering: Advantages, Drawbacks and Current Improvements, and Future Perspectives. J. Mater. Chem. B 8.

  103. Claudio-Rizo, J. A., Delgado, J., Quintero-Ortega, I. A., Mata-Mata, J. L., & Mendoza-Novelo, B. (2018). Decellularized ECM-Derived Hydrogels: Modification and Properties. In Hydrogels;

  104. Vos, T., Flaxman, A. D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., Shibuya, K., Salomon, J. A., Abdalla, S., Aboyans, V., et al. (2012). Years lived with disability (YLDs) for 1160 sequelae of 289 Diseases and Injuries 1990–2010: A systematic analysis for the global burden of Disease Study 2010. Lancet, 380, https://doi.org/10.1016/S0140-6736(12)61729-2

  105. Rana, D., Zreiqat, H., Benkirane-Jessel, N., Ramakrishna, S., & Ramalingam, M. (2017). Development of Decellularized Scaffolds for Stem Cell-Driven Tissue Engineering. J. Tissue Eng. Regen. Med. 11.

  106. Thakkar, S., Fernandes, H., & Moroni, L. (2015). Decellularized Extracellular Matrix Scaffolds for Cartilage Regeneration. In Methods in Molecular Biology; ; Vol. 1340.

  107. Leor, J., Amsalem, Y., Cohen, S., & Cells (2005). Scaffolds, and Molecules for Myocardial Tissue Engineering.Pharmacol. Ther.105.

  108. Sabetkish, S., Kajbafzadeh, A. M., Sabetkish, N., Khorramirouz, R., Akbarzadeh, A., Seyedian, S. L., Pasalar, P., Orangian, S., Hossein Beigi, R. S., Aryan, Z., et al. (2015). Whole-organ tissue Engineering: Decellularization and recellularization of Three-Dimensional Matrix Liver Scaffolds. J Biomed Mater Res - Part A, 103, https://doi.org/10.1002/jbm.a.35291

  109. Ramzan, F., Ekram, S., Frazier, T., Salim, A., Mohiuddin, O. A., & Khan, I. (2022). Decellularized human umbilical tissue-derived hydrogels promote proliferation and chondrogenic differentiation of mesenchymal stem cells. Bioengineering, 9, https://doi.org/10.3390/bioengineering9060239

  110. Hoshiba, T., Chen, G., Endo, C., Maruyama, H., Wakui, M., Nemoto, E., Kawazoe, N., & Tanaka, M. (2016). Decellularized Extracellular Matrix as an in Vitro Model to Study the Comprehensive Roles of the ECM in Stem Cell Differentiation. Stem Cells Int. 2016.

  111. Cheng, C. W., Solorio, L. D., & Alsberg, E. (2014). Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering.Biotechnol. Adv.32.

  112. Kim, I. G., Hwang, M. P., Du, P., Ko, J., Ha, C. won;, Do, S. H., & Park, K. (2015). Bioactive Cell-Derived Matrices Combined with Polymer Mesh Scaffold for Osteogenesis and Bone Healing. Biomaterials 50, https://doi.org/10.1016/j.biomaterials.2015.01.054

  113. Chen, G., & Lv, Y. (2018). Decellularized Bone Matrix Scaffold for Bone Regeneration. In Methods in Molecular Biology; ; Vol. 1577.

  114. Zhang, W., Zhu, Y., Li, J., Guo, Q., Peng, J., Liu, S., Yang, J., & Wang, Y. (2016). Cell-Derived Extracellular Matrix: Basic Characteristics and Current Applications in Orthopedic Tissue Engineering.Tissue Eng. - Part B Rev.22.

  115. Kim, J. Y., Ahn, G., Kim, C., Lee, J. S., Lee, I. G., An, S. H., Yun, W. S., Kim, S. Y., & Shim, J. H. (2018). Synergistic Effects of Beta Tri-Calcium phosphate and porcine-derived decellularized bone extracellular matrix in 3D-Printed Polycaprolactone Scaffold on Bone Regeneration. Macromolecular Bioscience, 18, https://doi.org/10.1002/mabi.201800025

  116. Cunniffe, G. M., Díaz-Payno, P. J., Ramey, J. S., Mahon, O. R., Dunne, A., Thompson, E. M., O’Brien, F. J., & Kelly, D. J. (2017). Growth plate Extracellular Matrix-Derived Scaffolds for large bone defect Healing. European Cells & Materials, 33, https://doi.org/10.22203/eCM.v033a10

  117. Lin, X., Zhao, C., Zhu, P., Chen, J., Yu, H., Cai, Y., Zhang, Q., Qin, A., & Fan, S. (2018). Periosteum extracellular-matrix-mediated Acellular mineralization during bone formation. Adv Healthc Mater, 7, https://doi.org/10.1002/adhm.201700660

  118. Hesse, E., Kluge, G., Atfi, A., Correa, D., Haasper, C., Berding, G., & Shin, H. (2010). Repair of a Segmental Long bone defect in human by implantation of a novel multiple disc graft. Bone, 46, https://doi.org/10.1016/j.bone.2010.02.011. VieringJ.Länger, F.; Vogt, P.M.; et al.

  119. Chen, G., Dong, C., Yang, L., & Lv, Y. (2015). 3D scaffolds with different stiffness but the same microstructure for bone tissue Engineering. Acs Applied Materials & Interfaces, 7, https://doi.org/10.1021/acsami.5b02662

  120. Lee, D. J., Padilla, R., Zhang, H., Hu, W. S., & Ko, C. C. (2014). Biological Assessment of a Calcium Silicate Incorporated Hydroxyapatite-Gelatin Nanocomposite: A Comparison to Decellularized Bone Matrix. Biomed Res. Int. 2014, https://doi.org/10.1155/2014/837524

  121. Luo, L., Eswaramoorthy, R., Mulhall, K. J., & Kelly, D. J. (2016). Decellularization of porcine articular cartilage explants and their subsequent repopulation with human chondroprogenitor cells. Journal Of The Mechanical Behavior Of Biomedical Materials, 55, https://doi.org/10.1016/j.jmbbm.2015.10.002

  122. Luo, L., Chu, J. Y. J., Eswaramoorthy, R., Mulhall, K. J., & Kelly, D. J. (2017). Engineering Tissues that mimic the Zonal Nature of articular cartilage using decellularized cartilage explants seeded with adult stem cells. ACS Biomater Sci Eng, 3, https://doi.org/10.1021/acsbiomaterials.6b00020

  123. Tian, G., Jiang, S., Li, J., Wei, F., Li, X., Ding, Y., Yang, Z., Sun, Z., Zha, K., Wang, F. X., et al. (2021). Cell-free decellularized cartilage extracellular matrix scaffolds combined with interleukin 4 promote Osteochondral Repair through Immunomodulatory Macrophages: In Vitro and in vivo preclinical study. Acta Biomaterialia, 127, https://doi.org/10.1016/j.actbio.2021.03.054

  124. Elsaesser, A. F., Bermueller, C., Schwarz, S., Koerber, L., Breiter, R., & Rotter, N. (2014). In Vitro cytotoxicity and in vivo Effects of a decellularized Xenogeneic Collagen Scaffold in nasal cartilage repair. Tissue Eng - Part A, 20, https://doi.org/10.1089/ten.tea.2013.0365

  125. Schwarz, S., Elsaesser, A. F., Koerber, L., Goldberg-Bockhorn, E., Seitz, A. M., Bermueller, C., Dürselen, L., Ignatius, A., Breiter, R., & Rotter, N. (2015). Processed xenogenic cartilage as innovative Biomatrix for Cartilage tissue Engineering: Effects on Chondrocyte differentiation and function. Journal Of Tissue Engineering And Regenerative Medicine, 9, https://doi.org/10.1002/term.1650

  126. Almeida, H. V., Cunniffe, G. M., Vinardell, T., Buckley, C. T., O’Brien, F. J., & Kelly, D. J. (2015). Coupling freshly isolated CD44 + Infrapatellar Fat pad-derived stromal cells with a TGF-Β3 eluting cartilage ECM-Derived Scaffold as a single-stage strategy for promoting Chondrogenesis. Adv Healthc Mater, 4, https://doi.org/10.1002/adhm.201400687

  127. Bautista, C. A., Park, H. J., Mazur, C. M., Aaron, R. K., & Bilgen, B. (2016). Effects of Chondroitinase ABC-Mediated proteoglycan digestion on decellularization and recellularization of articular cartilage. PLoS One, 11, https://doi.org/10.1371/journal.pone.0158976

  128. Novak, T., Seelbinder, B., Twitchell, C. M., Voytik-Harbin, S. L., & Neu, C. P. (2016). Dissociated and reconstituted cartilage microparticles in Densified Collagen Induce Local HMSC differentiation. Advanced Functional Materials, 26, https://doi.org/10.1002/adfm.201601877

  129. Gawlitta, D., Benders, K. E. M., Visser, J., Van Der Sar, A. S., Kempen, D. H. R., Theyse, L. F. H., Malda, J., & Dhert, W. J. A. (2015). Decellularized cartilage-derived matrix as substrate for endochondral bone regeneration. Tissue Eng - Part A, 21, https://doi.org/10.1089/ten.tea.2014.0117

  130. Rowland, C. R., Lennon, D. P., Caplan, A. I., & Guilak, F. (2013). The Effects of Crosslinking of Scaffolds Engineered from Cartilage ECM on the Chondrogenic differentiation of MSCs. Biomaterials, 34, https://doi.org/10.1016/j.biomaterials.2013.04.027

  131. Moradi, A., Ataollahi, F., Sayar, K., Pramanik, S., Chong, P. P., Khalil, A. A., Kamarul, T., & Pingguan-Murphy, B. (2016). Chondrogenic potential of physically treated bovine cartilage matrix derived porous scaffolds on human dermal fibroblast cells. J Biomed Mater Res - Part A, 104, https://doi.org/10.1002/jbm.a.35561

  132. Yang, Q., Peng, J., Guo, Q., Huang, J., Zhang, L., Yao, J., Yang, F., Wang, S., Xu, W., Wang, A., et al. (2008). A cartilage ECM-Derived 3-D porous Acellular Matrix Scaffold for in vivo cartilage tissue Engineering with PKH26-Labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials, 29, https://doi.org/10.1016/j.biomaterials.2008.01.037

  133. Mohiuddin, O. A., Campbell, B., Poche, J. N., Ma, M., Rogers, E., Gaupp, D., Harrison, M. A. A., Bunnell, B. A., Hayes, D. J., & Gimble, J. M. (2019). Decellularized adipose tissue hydrogel promotes bone regeneration in critical-sized mouse femoral defect model. Frontiers In Bioengineering And Biotechnology, 7, https://doi.org/10.3389/fbioe.2019.00211

  134. Song, J. S., Takimoto, K., Jeon, M., Vadakekalam, J., Ruparel, N. B., & Diogenes, A. (2017). Decellularized Human Dental Pulp as a Scaffold for Regenerative Endodontics. Journal Of Dental Research, 96, https://doi.org/10.1177/0022034517693606

  135. Hu, L., Gao, Z., Xu, J., Zhu, Z., Fan, Z., Zhang, C., Wang, J., & Wang, S. (2017). Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration. Biomed Res. Int. 2017, https://doi.org/10.1155/2017/9342714

  136. Traphagen, S. B., Fourligas, N., Xylas, J. F., Sengupta, S., Kaplan, D. L., Georgakoudi, I., & Yelick, P. C. (2012). Characterization of Natural, decellularized and reseeded porcine tooth Bud Matrices. Biomaterials, 33, https://doi.org/10.1016/j.biomaterials.2012.04.010

  137. Goldberg, M., & Smith, A. J. (2004). Cells and Extracellular Matrices of Dentin and Pulp: A Biological Basis for Repair and Tissue Engineering.Crit. Rev. Oral Biol. Med.15.

  138. Benders, K. E. M., & Weeren, P. R. (2013). ; Badylak, S.F.; Saris, D.B.F.; Dhert, W.J.A.; Malda, J. Extracellular Matrix Scaffolds for Cartilage and Bone Regeneration. Trends Biotechnol. 31.

  139. Sangkert, S., Meesane, J., Kamonmattayakul, S., & Chai, W. L. (2016). Modified Silk Fibroin Scaffolds with Collagen/Decellularized pulp for bone tissue Engineering in Cleft Palate: Morphological structures and biofunctionalities. Mater Sci Eng C, 58, https://doi.org/10.1016/j.msec.2015.09.031

  140. Sangkert, S., Kamonmattayakul, S., Chai, W. L., & Meesane, J. (2017). Modified porous scaffolds of Silk Fibroin with Mimicked Microenvironment based on decellularized Pulp/Fibronectin for designed performance biomaterials in maxillofacial bone defect. J Biomed Mater Res - Part A, 105, https://doi.org/10.1002/jbm.a.35983

  141. Thai, T. H., Nuntanaranont, T., Kamolmatyakul, S., & Meesane, J. (2018). In vivo evaluation of Modified Silk Fibroin Scaffolds with a mimicked microenvironment of Fibronectin/Decellularized pulp tissue for maxillofacial surgery. Biomedical Materials, 13, https://doi.org/10.1088/1748-605X/aa853e

  142. Wang, F., Song, Q., Du, L., & Wu, X. (2020). Development and characterization of an Acellular Porcine Small Intestine Submucosa Scaffold for Use in corneal epithelium tissue Engineering. Current Eye Research, 45, https://doi.org/10.1080/02713683.2019.1663386

  143. Badylak, S. F. (2007). The Extracellular Matrix as a Biologic Scaffold Material. Biomaterials, 28, https://doi.org/10.1016/j.biomaterials.2007.04.043

  144. Badylak, S. F., Freytes, D. O., & Gilbert, T. W. (2009). Extracellular Matrix as a Biological Scaffold Material: Structure and Function.Acta Biomater.5.

  145. Neishabouri, A., Soltani Khaboushan, A., Daghigh, F., Kajbafzadeh, A. M., & Majidi Zolbin, M. (2022). Decellularization in tissue Engineering and Regenerative Medicine: Evaluation, modification, and application methods. Frontiers In Bioengineering And Biotechnology, 10, 1–21. https://doi.org/10.3389/fbioe.2022.805299

    Article  Google Scholar 

  146. Sun, T., Yao, S., Liu, M., Yang, Y., Ji, Y., Cui, W., Qu, Y., & Guo, X. (2018). Composite Scaffolds of Mineralized Natural Extracellular Matrix on true bone ceramic induce bone regeneration through Smad1/5/8 and ERK1/2 pathways. Tissue Eng - Part A, 24, https://doi.org/10.1089/ten.tea.2017.0179

  147. Rong, J. J., Sang, H. F., Qian, A. M., Meng, Q. Y., Zhao, T. J., & Li, X. Q. (2015). Biocompatibility of Porcine Small Intestinal Submucosa and Rat Endothelial Progenitor Cells in Vitro. Int. J. Clin. Exp. Pathol. 8.

  148. Singh, H., Purohit, S. D., Bhaskar, R., Yadav, I., Bhushan, S., Gupta, M. K., & Mishra, N. C. (2022). Curcumin in Decellularized Goat Small Intestine Submucosa for Wound Healing and skin tissue Engineering. J Biomed Mater Res - Part B Appl Biomater, 110, https://doi.org/10.1002/jbm.b.34903

  149. Syed, O., Walters, N. J., Day, R. M., Kim, H. W., & Knowles, J. C. (2014). Evaluation of decellularization protocols for production of Tubular Small Intestine Submucosa Scaffolds for Use in Oesophageal tissue Engineering. Acta Biomaterialia, 10, https://doi.org/10.1016/j.actbio.2014.08.024

  150. Jiang, Z., & Zhang, Z. (2020). Treatment of Meniscus Injury or Degeneration: The effect and function of stem cells and Artificial Polymer Scaffolds to Form tissue Engineering System. Chinese J Tissue Eng Res, 24, https://doi.org/10.3969/j.issn.2095.4344.2334

  151. Zhang, C., Li, M., Zhu, J., Luo, F., & Zhao, J. (2017). Enhanced bone Repair Induced by Human adipose-derived stem cells on osteogenic Extracellular Matrix Ornamented Small Intestinal Submucosa. Regenerative Medicine, 12, https://doi.org/10.2217/rme-2017-0024

  152. Li, M., Zhang, C., Cheng, M., Gu, Q., & Zhao, J. (2017). Small intestinal submucosa: A potential Osteoconductive and Osteoinductive Biomaterial for bone tissue Engineering. Mater Sci Eng C, 75, https://doi.org/10.1016/j.msec.2017.02.042

  153. Strietzel, F. P., Khongkhunthian, P., Khattiya, R., Patchanee, P., & Reichart, P. A. (2006). Healing pattern of bone defects covered by different membrane types - a histologic study in the Porcine Mandible. J Biomed Mater Res - Part B Appl Biomater, 78, https://doi.org/10.1002/jbm.b.30452

  154. Dziedzic, D. S. M., Francisco, J. C., Mogharbel, B. F., Irioda, A. C., Stricker, P. E. F., Floriano, J., de Noronha, L., Abdelwahid, E., Franco, C. R. C., & de Carvalho, K. A. T. (2021). Combined Biomaterials: Amniotic membrane and adipose tissue to restore injured bone as promoter of calcification in bone regeneration: Preclinical model. Calcified Tissue International, 108, https://doi.org/10.1007/s00223-020-00793-1

  155. Sabouri, L., Farzin, A., Kabiri, A., Milan, P. B., Farahbakhsh, M., Mehdizadehkashi, A., Kajbafzadeh, A., Samadikuchaksaraei, A., Yousefbeyk, F., Azami, M., et al. (2020). Mineralized human amniotic membrane as a Biomimetic Scaffold for hard tissue Engineering Applications. ACS Biomater Sci Eng, 6, https://doi.org/10.1021/acsbiomaterials.0c00881

  156. Lindenmair, A., Wolbank, S., Stadler, G., Meinl, A., Peterbauer-Scherb, A., Eibl, J., Polin, H., Gabriel, C., van Griensven, M., & Redl, H. (2010). Osteogenic differentiation of Intact Human amniotic membrane. Biomaterials, 31, https://doi.org/10.1016/j.biomaterials.2010.07.090

  157. Gindraux, F., Rondot, T., de Billy, B., Zwetyenga, N., Fricain, J. C., Pagnon, A., & Obert, L. (2017). Similarities between Induced membrane and amniotic membrane: Novelty for bone repair. Placenta, 59, https://doi.org/10.1016/j.placenta.2017.06.340

  158. Aprile, P., Letourneur, D., & Simon-Yarza, T. (2020). Membranes for Guided Bone Regeneration: A Road from Bench to Bedside.Adv. Healthc. Mater.9.

  159. Fenelon, M., Maurel, B., Siadous, D., Gremare, R., Delmond, A., Durand, S., Brun, M., Catros, S., Gindraux, S., & L’Heureux, F. (2019). Comparison of the impact of preservation methods on amniotic membrane Properties for tissue Engineering Applications. Mater Sci Eng C, 104, https://doi.org/10.1016/j.msec.2019.109903

  160. Rameshbabu, A. P., Ghosh, P., Subramani, E., Bankoti, K., Kapat, K., Datta, S., Maity, P. P., Subramanian, B., Roy, S., Chaudhury, K., et al. (2016). Investigating the potential of human placenta-derived Extracellular Matrix Sponges coupled with amniotic membrane-derived stem cells for osteochondral tissue Engineering. J Mater Chem B, 4, https://doi.org/10.1039/c5tb02321a

  161. Rameshbabu, A. P., Bankoti, K., Datta, S., Subramani, E., Apoorva, A., Ghosh, P., Jana, S., Manchikanti, P., Roy, S., Chaudhury, K., et al. (2020). Bioinspired 3D porous human placental derived Extracellular Matrix/Silk Fibroin Sponges for accelerated bone regeneration. Mater Sci Eng C, 113, https://doi.org/10.1016/j.msec.2020.110990

  162. Zhang, Z., Luo, X., Xu, H., Wang, L., Jin, X., Chen, R., Ren, X., Lu, Y., Fu, M., Huang, Y., et al. (2015). Bone marrow stromal cell-derived Extracellular Matrix promotes Osteogenesis of adipose-derived stem cells. Cell Biology International, 39, https://doi.org/10.1002/cbin.10385

  163. Onishi, T., Shimizu, T., Akahane, M., Omokawa, S., Okuda, A., Kira, T., Inagaki, Y., & Tanaka, Y. (2018). Osteogenic extracellular matrix sheet for bone tissue regeneration. European Cells & Materials, 36, https://doi.org/10.22203/eCM.v036a06

  164. Andrew Wu, Y. H., Chiu, Y. C., Lin, Y. H., Ho, C. C., Shie, M. Y., & Chen, Y. (2019). W. 3D-Printed bioactive calcium Silicate/Poly-ε-Caprolactone Bioscaffolds modified with Biomimetic Extracellular Matrices for Bone Regeneration. International Journal Of Molecular Sciences, 20, https://doi.org/10.3390/ijms20040942

  165. Dequach, J. A., Yuan, S. H., Goldstein, L. S. B., & Christman, K. L. (2011). Decellularized porcine brain matrix for cell culture and tissue Engineering Scaffolds. Tissue Eng - Part A, 17, https://doi.org/10.1089/ten.tea.2010.0724

  166. Okada, M., Payne, T. R., Oshima, H., Momoi, N., Tobita, K., & Huard, J. (2010). Differential Efficacy of Gels derived from small intestinal submucosa as an Injectable Biomaterial for Myocardial Infarct Repair. Biomaterials, 31, https://doi.org/10.1016/j.biomaterials.2010.06.056

  167. Tukmachev, D., Forostyak, S., Koci, Z., Zaviskova, K., Vackova, I., Vyborny, K., Sandvig, I., Sandvig, A., Medberry, C. J., Badylak, S. F., et al. (2016). Injectable Extracellular Matrix Hydrogels as Scaffolds for spinal cord Injury Repair. Tissue Eng - Part A, 22, https://doi.org/10.1089/ten.tea.2015.0422

  168. Beiki, B., Zeynali, B., & Seyedjafari, E. (2017). Fabrication of a three dimensional spongy Scaffold using Human Wharton’s Jelly Derived Extra Cellular Matrix for Wound Healing. Mater Sci Eng C, 78, https://doi.org/10.1016/j.msec.2017.04.074

  169. Basiri, A., Farokhi, M., Azami, M., Ebrahimi-Barough, S., Mohamadnia, A., Rashtbar, M., Hasanzadeh, E., Mahmoodi, N., Baghaban Eslaminejad, M., & Ai, J. A. (2019). Silk Fibroin/Decellularized Extract of Wharton’s Jelly Hydrogel intended for cartilage tissue Engineering. Progress In Biomaterials, 8, https://doi.org/10.1007/s40204-019-0108-7

  170. Safari, F., Fani, N., Eglin, D., Alini, M., Stoddart, M. J., & Baghaban Eslaminejad, M. (2019). Human umbilical cord-derived scaffolds for cartilage tissue Engineering. J Biomed Mater Res - Part A, 107, https://doi.org/10.1002/jbm.a.36698

Download references

Funding

This project was financially supported by NRPU grant no. 7083, Higher Education Commission, Islamabad, Pakistan.

Author information

Authors and Affiliations

Authors

Contributions

Ramzan F prepared and wrote the manuscript; Salim A evaluated, analyzed, and assisted in writing; Khan I conceptualized and finalized the article.

Corresponding author

Correspondence to Irfan Khan.

Ethics declarations

Conflict of Interest

The author(s) declared no potential conflicts of interest for the research, authorship, and/or publication of this article.

Ethics approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramzan, F., Salim, A. & Khan, I. Osteochondral Tissue Engineering Dilemma: Scaffolding Trends in Regenerative Medicine. Stem Cell Rev and Rep 19, 1615–1634 (2023). https://doi.org/10.1007/s12015-023-10545-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10545-x

Keywords

Navigation