Skip to main content
Log in

Applications of Monoclonal Antibodies Against Natural Compounds for Functional Analysis of Crude Drugs

  • Food Factors: Molecular targets, mechanisms, pharmacology and in vivo efficacy (D-X Hou, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This study summarizes the applications of monoclonal antibodies (MAbs) against bioactive natural compounds for the functional analysis of crude drugs.

Recent Findings

To date, we have established more than 40 kinds of MAbs against natural compounds and set up enzyme-linked immunosorbent assay (ELISA). The intracellular accumulation of harringtonine (HT) and its derivatives into cells was determined by ELISA using anti-HT MAb, and the uptake levels of these compounds conformed to their respective antiproliferative activities. Eastern blotting is an on-membrane quantitative analytical system that uses MAbs against natural compounds and it can also be used in a biological sample for pharmacokinetics study. Glycyrrhizin (GC) was detected in the serum of rats treated with GC by eastern blotting. Additionally, eastern blotting using MAb against 3-monoglucuronyl-glycyrrhetinic acid (3-MGA) could determine a potential causative agent of pseudoaldosteronism induced by excess intake of GC. The immunoaffinity column coupled with MAb made preparing an extract containing all components feasible except the target compound. Cell-based studies using GC-removed licorice extract, which was prepared by the immunoaffinity column conjugated with anti-GC MAb, revealed the potential functions of GC in licorice extract. Moreover, MAbs were used in determining cellular localization and target molecules of natural compounds. The combination of analysis using MAb and LC-MS/MS showed that aristolochic acid I (AA-I), a naturally occurring nephrotoxin and carcinogen, targets α-actinin-4 in the kidney cells.

Summary

MAbs against natural compounds are useful tools to determine real pharmacological functions, cellular localization, and molecular targets of natural compounds in crude extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. WHO. WHO traditional medicine strategy 2014–2023. World Health Organization 2013.

  2. Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7. https://doi.org/10.1038/256495a0.

    Article  PubMed  Google Scholar 

  3. Sawada J, Janejai N, Nagamatsu K, Terao T. Production and characterization of high-affinity monoclonal antibodies against morphine. Mol Immunol. 1988;25(9):937–43. https://doi.org/10.1016/0161-5890(88)90133-2.

    Article  CAS  PubMed  Google Scholar 

  4. Weiler EW. Chemistry of plant protection. Berlin: Springer-Verlag; 1990. p. 145–220.

    Google Scholar 

  5. Cedeño-Arias M, Sánchez-Ramírez J, Blanco-Santana R, Rengifo-Calzado E. Validation of a flow cytometry based binding assay for evaluation of monoclonal antibody recognizing EGF receptor. Sci Pharm. 2011;79(3):569–81. https://doi.org/10.3797/scipharm.1104-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tanaka H, Shoyama Y. Formation of a monoclonal antibody against glycyrrhizin and development of an ELISA. Biol Pharm Bull. 1998;21(12):1391–3. https://doi.org/10.1248/bpb.21.1391.

    Article  CAS  PubMed  Google Scholar 

  7. • Fujii S, Morinaga O, Uto T, Nomura S, Shoyama Y. Simultaneous determination of glycyrrhizin and liquiritin in licorice roots and Kampo medicines by combination enzyme-linked immunosorbent assay using anti-glycyrrhizin and anti-liquiritin monoclonal antibodies. J Immunoassay Immunochem. 2017;38(3):285–98. https://doi.org/10.1080/15321819.2016.1260586This article is one example of ELISA using MAbs against natural compounds.

    Article  CAS  PubMed  Google Scholar 

  8. Shan S, Tanaka H, Shoyama Y. Enzyme-linked immunosorbent assay for glycyrrhizin using anti-glycyrrhizin monoclonal antibody and an eastern blotting technique for glucuronides of glycyrrhetic acid. Anal Chem. 2001;73(24):5784–90. https://doi.org/10.1021/ac0106997.

    Article  CAS  PubMed  Google Scholar 

  9. Shoyama Y. Standardization of licorice and TCM formulations using eastern blot fingerprinting analysis. J Chemother. 2013:573070. https://doi.org/10.1155/2013/573070.

  10. Fujii S, Morinaga O, Uto T, Nomura S, Shoyama Y. Development of double eastern blotting for major licorice components, glycyrrhizin and liquiritin for chemical quality control of licorice using anti-glycyrrhizin and anti-liquiritin monoclonal antibodies. J Agric Food Chem. 2016;64(5):1087–93. https://doi.org/10.1021/acs.jafc.5b04732.

    Article  CAS  PubMed  Google Scholar 

  11. Xu J, Tanaka H, Shoyama Y. One-step immunochromatographic separation and ELISA quantification of glycyrrhizin from traditional Chinese medicines. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;850(1–2):53–8. https://doi.org/10.1016/j.jchromb.2006.10.062.

    Article  CAS  PubMed  Google Scholar 

  12. Uto T, Morinaga O, Tanaka H, Shoyama Y. Analysis of the synergistic effect of glycyrrhizin and other constituents in licorice extract on lipopolysaccharide-induced nitric oxide production using knock-out extract. Biochem Biophys Res Commun. 2012;417(1):473–8. https://doi.org/10.1016/j.bbrc.2011.11.143.

    Article  CAS  PubMed  Google Scholar 

  13. Uto T, Tung NH, Morinaga O, Shoyama Y. Interaction analysis of glycyrrhizin on licorice extract-induced apoptosis of human leukemia cells by knockout extract. Nat Prod Chem Res. 2013;1:105. https://doi.org/10.4172/2329-6836.1000105.

    Article  Google Scholar 

  14. •• Hsu YC, Chang PJ, Tung CW, Shih YH, Ni WC, Li YC, et al. De-glycyrrhizinated licorice extract attenuates high glucose-stimulated renal tubular epithelial-mesenchymal transition via suppressing the Notch2 signaling pathway. Cells. 2020;9(1):125. https://doi.org/10.3390/cells9010125This article is one example indicating that KO extract is a useful approach for determining the potential function of target natural compounds in extracts on biological studies.

    Article  CAS  PubMed Central  Google Scholar 

  15. Fujii S, Tuvshintogtokh I, Mandakh B, Munkhjargal B, Uto T, Morinaga O, et al. Screening of Glycyrrhiza uralensis Fisch. ex DC. containing high concentrations of glycyrrhizin by eastern blotting and enzyme-linked immunosorbent assay using anti-glycyrrhizin monoclonal antibody for selective breeding of licorice. J Nat Med. 2014;68(4):717–22. https://doi.org/10.1007/s11418-014-0847-7.

    Article  CAS  PubMed  Google Scholar 

  16. •• Morinaga O, Ishiuchi K, Ohkita T, Tian C, Hirasawa A, Mitamura M, et al. Isolation of a novel glycyrrhizin metabolite as a causal candidate compound for pseudoaldosteronism. Sci Rep. 2018;8(1):15568. https://doi.org/10.1038/s41598-018-33834-9This article shows that analysis using the eastern blotting determined a new marker compound causing an adverse effect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. •• Ishiuchi K, Morinaga O, Ohkita T, Tian C, Hirasawa A, Mitamura M, et al. 18β-Glycyrrhetyl-3-O-sulfate would be a causative agent of licorice-induced pseudoaldosteronism. Sci Rep. 2019;9(1):1587. https://doi.org/10.1038/s41598-018-38182-2This article shows that analysis using the eastern blotting determined a new marker compound causing an adverse effect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fujii S, Morinaga O, Uto T, Nomura S, Shoyama Y. Development of a monoclonal antibody-based immunochemical assay for liquiritin and its application to the quality control of licorice products. J Agric Food Chem. 2014;62(15):3377–83. https://doi.org/10.1021/jf404731z.

    Article  CAS  PubMed  Google Scholar 

  19. Tanaka H, Fukuda N, Shoyama Y. Formation of monoclonal antibody against a major ginseng component, ginsenoside Rb1 and its characterization. Cytotechnology. 1999;29(2):115–20. https://doi.org/10.1023/A:1008068718392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shoyama Y, Tanaka H. Quantitative analysis of ginsenosides Rb1, Rg1, and Re in American ginseng berry and flower samples by ELISA using monoclonal antibodies. J Nat Med. 2009;63(3):360–3. https://doi.org/10.1007/s11418-009-0332-x.

    Article  CAS  PubMed  Google Scholar 

  21. Sritularak B, Morinaga O, Yuan CS, Shoyama Y, Tanaka H. Quantitative analysis of ginsenosides Rb1, Rg1, and Re in American ginseng berry and flower samples by ELISA using monoclonal antibodies. J Nat Med. 2009;63(3):360–3. https://doi.org/10.1007/s11418-009-0332-x.

    Article  CAS  PubMed  Google Scholar 

  22. Chao Z, Shoyama Y, Tanaka H. Pharmacokinetic study of ginsenosides Rb1 and Rg1 in rat by ELISA using anti-ginsenosides Rb1 and Rg1 monoclonal antibodies. Am J Chin Med. 2006;34(6):1069–81. https://doi.org/10.1142/S0192415X06004533.

    Article  CAS  PubMed  Google Scholar 

  23. Ma LL, Chao Z, Tanaka H, Shoyama Y. Immunodetection of ginsenoside Rb1 in rat serum. Nan Fang Yi Ke Da Xue Xue Bao. 2007;27(12):1915–7.

    CAS  PubMed  Google Scholar 

  24. Tanaka H, Fukuda N, Yahara S, Isoda S, Yuan CS, Shoyama Y. Isolation of ginsenoside Rb1 from Kalopanax pictus by eastern blotting using anti-ginsenoside Rb1 monoclonal antibody. Phytother Res. 2005;19(3):255–8. https://doi.org/10.1002/ptr.1675.

    Article  CAS  PubMed  Google Scholar 

  25. Tung NH, Shoyama Y. Eastern blotting analysis and isolation of two new dammarane-type saponins from American ginseng. Chem Pharm Bull (Tokyo). 2012;60(10):1329–33. https://doi.org/10.1248/cpb.c12-00486.

    Article  Google Scholar 

  26. Fukuda N, Tanaka H, Shoyama Y. Double staining of ginsenosides by Western blotting using anti-ginsenoside Rb1 and Rg1 monoclonal antibodies. Biol Pharm Bull. 2001;24(10):1157–60. https://doi.org/10.1248/bpb.24.1157.

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka H, Fukuda N, Shoyama Y. Eastern blotting and immunoaffinity concentration using monoclonal antibody for ginseng saponins in the field of traditional chinese medicines. J Agric Food Chem. 2007;55(10):3783–7. https://doi.org/10.1021/jf063457m.

    Article  CAS  PubMed  Google Scholar 

  28. Yokota S, Onohara Y, Shoyama Y. Immunofluorescence and immunoelectron microscopic localization of medicinal substance, Rb1, in several plant parts of Panax ginseng. Curr Drug Discov Technol. 2011;8(1):51–9. https://doi.org/10.2174/157016311794519938.

    Article  CAS  PubMed  Google Scholar 

  29. Fukuda N, Tanaka H, Shoyama Y. Formation of monoclonal antibody against a major ginseng component, ginsenoside Rg1 and its characterization. Monoclonal antibody for a ginseng saponin. Cytotechnology. 2000;34(3):197–204. https://doi.org/10.1023/A:1008162703957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morinaga O, Tanaka H, Shoyama Y. Detection and quantification of ginsenoside Re in ginseng samples by a chromatographic immunostaining method using monoclonal antibody against ginsenoside Re. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;830(1):100–4. https://doi.org/10.1016/j.jchromb.2005.10.040.

    Article  CAS  PubMed  Google Scholar 

  31. Pongkitwitoon B, Sakamoto S, Morinaga O, Juengwatanatrakul T, Shoyama Y, Tanaka H, et al. Single-chain variable fragment antibody against ginsenoside Re as an effective tool for the determination of ginsenosides in various ginsengs. J Nat Med. 2011;65(1):24–30. https://doi.org/10.1007/s11418-010-0446-1.

    Article  CAS  PubMed  Google Scholar 

  32. Sakamoto S, Taura F, Pongkitwitoon B, Putalun W, Tsuchihashi R, Kinjo J, et al. Development of sensitivity-improved fluorescence-linked immunosorbent assay using a fluorescent single-domain antibody against the bioactive naphthoquinone, plumbagin. Anal Bioanal Chem. 2010;396(8):2955–63. https://doi.org/10.1007/s00216-010-3535-9.

    Article  CAS  PubMed  Google Scholar 

  33. Morinaga O, Uto T, Yuan CS, Tanaka H, Shoyama Y. Evaluation of a new eastern blotting technique for the analysis of ginsenoside Re in American ginseng berry pulp extracts. Fitoterapia. 2010;81(4):284–8. https://doi.org/10.1016/j.fitote.2009.10.005.

    Article  CAS  PubMed  Google Scholar 

  34. Fukuda N, Tanaka H, Shoyama Y. Isolation of the pharmacologically active saponin ginsenoside Rb1 from ginseng by immunoaffinity column chromatography. J Nat Prod. 2000;63(2):283–5. https://doi.org/10.1021/np990356s.

    Article  CAS  PubMed  Google Scholar 

  35. • Pongkitwitoon B, Sakamoto S, Nagamitsu R, Putalun W, Tanaka H, Morimoto S. A monoclonal antibody-based enzyme-linked immunosorbent assay for determination of homoharringtonine. Planta Med. 2018;84(14):1038–44. https://doi.org/10.1055/a-0578-8689This article is one example of ELISA using MAbs against natural compounds.

    Article  CAS  PubMed  Google Scholar 

  36. • Sakamoto S, Yusakul G, Nuntawong P, Kitisripanya T, Putalun W, Miyamoto T, et al. Development of an indirect competitive immunochromatographic strip test for rapid detection and determination of anticancer drug, harringtonine. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1048:150–4. https://doi.org/10.1016/j.jchromb.2017.01.032This article is one example of immunochromatographic strip assay using MAbs against natural compounds.

    Article  CAS  PubMed  Google Scholar 

  37. •• Sakamoto S, Miyamoto T, Usui K, Tanaka H, Morimoto S. Sodium-periodate-mediated harringtonine derivatives and their antiproliferative activity against HL-60 acute leukemia cells. J Nat Prod. 2018;81(1):34–40. https://doi.org/10.1021/acs.jnatprod.7b00541This article demonstrates the analysis of cellular uptake of natural compounds using ELISA.

    Article  CAS  PubMed  Google Scholar 

  38. Kido K, Morinaga O, Shoyama Y, Tanaka H. Quick analysis of baicalin in Scutellariae Radix by enzyme-linked immunosorbent assay using a monoclonal antibody. Talanta. 2008;77(1):346–50. https://doi.org/10.1016/j.talanta.2008.06.034.

    Article  CAS  PubMed  Google Scholar 

  39. Uto T. Functional analysis of bioactive natural compounds using monoclonal antibodies against natural compounds. Yakugaku Zasshi. 2014;134(10):1061–7. https://doi.org/10.1248/yakushi.14-00178.

    Article  CAS  PubMed  Google Scholar 

  40. Tian M, Tanaka H, Shang MY, Karashima S, Chao Z, Wang X, et al. Production, characterization of a monoclonal antibody against aristolochic acid-II and development of its assay system. Am J Chin Med. 2008;36(2):425–36. https://doi.org/10.1142/S0192415X08005874.

    Article  CAS  PubMed  Google Scholar 

  41. Li XW, Morinaga O, Tian M, Uto T, Yu J, Shang MY, et al. Development of an eastern blotting technique for the visual detection of aristolochic acids in Aristolochia and Asarum species by using a monoclonal antibody against aristolochic acids I and II. Phytochem Anal. 2013;24(6):645–53. https://doi.org/10.1002/pca.2448.

    Article  CAS  PubMed  Google Scholar 

  42. Li XW, Yokota S, Wang D, Wang X, Shoyama Y, Cai SQ. Localization of aristolochic acid in mouse kidney tissues by immunohistochemistry using an anti-AA-I and AA-II monoclonal antibody. Am J Chin Med. 2014;42(6):1453–69. https://doi.org/10.1142/S0192415X14500918.

    Article  CAS  PubMed  Google Scholar 

  43. Wang D, Li XW, Wang X, Tan HR, Jia Y, Yang L, et al. Alpha-actinin-4 is a possible target protein for aristolochic acid I in human kidney cells in vitro. Am J Chin Med. 2016;44(2):291–304. https://doi.org/10.1142/S0192415X16500178.

    Article  CAS  PubMed  Google Scholar 

  44. Ishiyama M, Shoyama Y, Murakami H, Shinohara H. Production of monoclonal antibodies and development of an ELISA for solamargine. Cytotechnology. 1995;18(3):153–8. https://doi.org/10.1007/BF00767762.

    Article  CAS  PubMed  Google Scholar 

  45. Putalun W, Tanaka H, Yahara S, Lhieochaiphan S, Shoyama Y. Survey of solasodine-type glycoalkaloids by western blotting and ELISA using anti-solamargine monoclonal antibody. Biol Pharm Bull. 2000;23(1):72–5. https://doi.org/10.1248/bpb.23.72.

    Article  CAS  PubMed  Google Scholar 

  46. Putalun W, Tanaka H, Shoyama Y. Rapid separation of solasodine glycosides by an immunoaffinity column using anti-solamargine monoclonal antibody. Cytotechnology. 1999;31(1–2):153–8. https://doi.org/10.1023/A:1008032524419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Putalun W, Taura F, Qing W, Matsushita H, Tanaka H, Shoyama Y. Anti-solasodine glycoside single-chain Fv antibody stimulates biosynthesis of solasodine glycoside in plants. Plant Cell Rep. 2003;22(5):344–9. https://doi.org/10.1007/s00299-003-0689-3.

    Article  CAS  PubMed  Google Scholar 

  48. Morinaga O, Uto T, Sakamoto S, Tanaka H, Shoyama Y. Enzyme-linked immunosorbent assay for total sennosides using anti-sennoside A and anti-sennoside B monoclonal antibodies. Fitoterapia. 2009;80(1):28–31. https://doi.org/10.1016/j.fitote.2008.09.004.

    Article  CAS  PubMed  Google Scholar 

  49. Morinaga O, Uto T, Sakamoto S, Putalun W, Lhieochaiphant S, Tanaka H, et al. Development of eastern blotting technique for sennoside A and sennoside B using anti-sennoside A and anti-sennoside B monoclonal antibodies. Phytochem Anal. 2009;20(2):154–8. https://doi.org/10.1002/pca.1111.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu SH, Shimokawa S, Tanaka H, Shoyama Y. Development of an assay system for saikosaponin A using anti-saikosaponin A monoclonal antibodies. Biol Pharm Bull. 2004;27(1):66–71. https://doi.org/10.1248/bpb.27.66.

    Article  CAS  PubMed  Google Scholar 

  51. Zhu S, Shimokawa S, Shoyama Y, Tanaka H. A novel analytical ELISA-based methodology for pharmacologically active saikosaponins. Fitoterapia. 2006;77(2):100–8. https://doi.org/10.1016/j.fitote.2005.11.005.

    Article  CAS  PubMed  Google Scholar 

  52. Chao Z, Cui Q, Tian E, Zeng W, Cai X, Li X, et al. Ultrasensitive time-resolved fluoroimmunoassay for saikosaponin A in Chaihu (Bupleuri Radix). PLoS One. 2016;11(3):e0151032. Published 2016 Mar 11. https://doi.org/10.1371/journal.pone.0151032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu Z, Morinaga O, Tanaka H, Shoyama Y. A quantitative ELISA using monoclonal antibody to survey paeoniflorin and albiflorin in crude drugs and traditional Chinese herbal medicines. Biol Pharm Bull. 2003;26(6):862–6. https://doi.org/10.1248/bpb.26.862.

    Article  CAS  PubMed  Google Scholar 

  54. Lu Z, Masaki T, Shoyama Y, Tanaka H. Construction and expression of a single chain Fv fragment against pharmacologically active paeoniflorin in Escherichia coli, and its potential use in an enzyme-linked immunosorbent assay. Planta Med. 2006;72(2):151–5. https://doi.org/10.1055/s-2005-873188.

    Article  CAS  PubMed  Google Scholar 

  55. Morinaga O, Lu Z, Lin L, Uto T, Sangmalee S, Putalun W, et al. Detection of paeoniflorin and albiflorin by immunostaining technique using anti-paeoniflorin monoclonal antibody. Phytochem Anal. 2013;24(2):124–8. https://doi.org/10.1002/pca.2389.

    Article  CAS  PubMed  Google Scholar 

  56. Kim JS, Tanaka H, Shoyama Y. Immunoquantitative analysis for berberine and its related compounds using monoclonal antibodies in herbal medicines. Analyst. 2004;129(1):87–91. https://doi.org/10.1039/b311304c.

    Article  CAS  PubMed  Google Scholar 

  57. Kim JS, Masaki T, Sirikantaramas S, Shoyama Y, Tanaka H. Activation of a refolded, berberine-specific, single-chain Fv fragment by addition of free berberine. Biotechnol Lett. 2006;28(13):999–1006. https://doi.org/10.1007/s10529-006-9033-7.

    Article  CAS  PubMed  Google Scholar 

  58. Chao Z, Tan M, Paudel MK, Sakamoto S, Ma L, Sasaki-Tabata K, et al. Development of an indirect competitive enzyme-linked immunosorbent assay (icELISA) using highly specific monoclonal antibody against paclitaxel. J Nat Med. 2013;67(3):512–8. https://doi.org/10.1007/s11418-012-0708-1.

    Article  CAS  PubMed  Google Scholar 

  59. • Cui Q, Tanaka H, Shoyama Y, Ye HT, Li F, Tian EW, et al. Development of a competitive time-resolved fluoroimmunoassay for paclitaxel. Phytochem Anal. 2018;29(3):284–9. https://doi.org/10.1002/pca.2741This article is one example of application using MAbs against natural compounds.

    Article  CAS  PubMed  Google Scholar 

  60. • Yusakul G, Sakamoto S, Tanaka H, Morimoto S. Improvement of heavy and light chain assembly by modification of heavy chain constant region 1 (CH1): application for the construction of an anti-paclitaxel fragment antigen-binding (Fab) antibody. J Biotechnol. 2018;288:41–7. https://doi.org/10.1016/j.jbiotec.2018.10.009This article is one example of application using MAbs against natural compounds.

    Article  CAS  PubMed  Google Scholar 

  61. Sakamoto S, Putalun W, Tsuchihashi R, Morimoto S, Kinjo J, Tanaka H. Development of an enzyme-linked immunosorbent assay (ELISA) using highly-specific monoclonal antibodies against plumbagin. Anal Chim Acta. 2008;607(1):100–5. https://doi.org/10.1016/j.aca.2007.11.021.

    Article  CAS  PubMed  Google Scholar 

  62. Sakamoto S, Taura F, Putalun W, Pongkitwitoon B, Tsuchihashi R, Morimoto S, et al. Construction and expression of specificity-improved single-chain variable fragments against the bioactive naphthoquinone, plumbagin. Biol Pharm Bull. 2009;32(3):434–9. https://doi.org/10.1248/bpb.32.434.

    Article  CAS  PubMed  Google Scholar 

  63. Sakamoto S, Putalun W, Pongkitwitoon B, Juengwatanatrakul T, Shoyama Y, Tanaka H, et al. Modulation of plumbagin production in Plumbago zeylanica using a single-chain variable fragment antibody against plumbagin. Plant Cell Rep. 2012;31(1):103–10. https://doi.org/10.1007/s00299-011-1143-6.

    Article  CAS  PubMed  Google Scholar 

  64. • Yusakul G, Togita R, Minami K, Chanpokapaiboon K, Juengwatanatrakul T, Putalun W, et al. An indirect competitive enzyme-linked immunosorbent assay toward the standardization of Pueraria candollei based on its unique isoflavonoid, kwakhurin. Fitoterapia. 2019;133:23–8. https://doi.org/10.1016/j.fitote.2018.12.010This article is one example of ELISA using MAbs against natural compounds.

    Article  CAS  PubMed  Google Scholar 

  65. • Chanpokapaiboon K, Khoonrit P, Yusakul G, Juengwatanatrakul T, Putalun W, Tanaka H, et al. A recombinant fab antibody against kwakhurin as a tool for sensitive indirect competitive ELISA. Curr Pharm Biotechnol. 2018;19(14):1170–6. https://doi.org/10.2174/1389201020666181226105223This article is one example of application using MAbs against natural compounds.

    Article  CAS  PubMed  Google Scholar 

  66. Singh KV, Kaur J, Varshney GC, Raje M, Suri CR. Synthesis and characterization of hapten-protein conjugates for antibody production against small molecules. Bioconjug Chem. 2004;15(1):168–73. https://doi.org/10.1021/bc034158v.

    Article  CAS  PubMed  Google Scholar 

  67. Goodrow MH, Harrison RO, Hammock BD. Hapten synthesis, antibody development, and competitive inhibition enzyme immunoassay for s-triazine herbicides. J Agric Food Chem. 1990;38(4):990–6. https://doi.org/10.1021/jf00094a016.

    Article  CAS  Google Scholar 

  68. Szurdoki F, Székács A, Le HM, Hammock BD. Synthesis of haptens and protein conjugates for the development of immunoassays for the insect growth regulator fenoxycarb. J Agric Food Chem. 2002;50(1):29–40. https://doi.org/10.1021/jf0107050.

    Article  CAS  PubMed  Google Scholar 

  69. Shoyama Y, Fukada T, Tanaka T, Kusai A, Nojima K. Direct determination of opium alkaloid-bovine serum albumin conjugate by matrix-assisted laser desorption/ionization mass spectrometry. Biol Pharm Bull. 1993;16(10):1051–3. https://doi.org/10.1248/bpb.16.1051.

    Article  CAS  PubMed  Google Scholar 

  70. Goto Y, Shima Y, Morimoto S, Shoyama Y, Murakami H, Kusai A, et al. Determination of tetrahydrocannabinolic acid–carrier protein conjugate by matrix-assisted laser desorption/ionization mass spectrometry and antibody formation. Org Mass Spectrom. 1994;29:668–71. https://doi.org/10.1002/oms.1210291115.

    Article  CAS  Google Scholar 

  71. Pérard-Viret J, Quteishat L, Alsalim R, Royer J, Dumas F. Cephalotaxus alkaloids. Alkaloids Chem Biol. 2017;78:205–352. https://doi.org/10.1016/bs.alkal.2017.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Powell RG, Weisleder D, Smith CR Jr, Rohwedder WK. Structures of harringtonine, isoharringtonine, and homoharringtonine. Tetrahedron Lett. 1970;11:815–8. https://doi.org/10.1016/s0040-4039(01)97839-6.

    Article  Google Scholar 

  73. Powell RG, Weisleder D, Smith CR Jr, Wolff IA. Structure of cephalotaxine and related alkaloids. Tetrahedron Lett. 1969;10:4081–4. https://doi.org/10.1016/S0040-4039(01)88620-2.

    Article  Google Scholar 

  74. Lee IS, Kang KS, Kim SY. Panax ginseng pharmacopuncture: current status of the research and future challenges. Biomolecules. 2019;10(1):33. https://doi.org/10.3390/biom10010033.

    Article  CAS  PubMed Central  Google Scholar 

  75. Yu SE, Mwesige B, Yi YS, Yoo BC. Ginsenosides: the need to move forward from bench to clinical trials. J Ginseng Res. 2019;43(3):361–7. https://doi.org/10.1016/j.jgr.2018.09.001.

    Article  PubMed  Google Scholar 

  76. Kao TC, Wu CH, Yen GC. Bioactivity and potential health benefits of licorice. J Agric Food Chem. 2014;62(3):542–53. https://doi.org/10.1021/jf404939f.

    Article  CAS  PubMed  Google Scholar 

  77. Conn JW, Rovner DR, Cohen EL. Licorice-induced pseudoaldosteronism. Hypertension, hypokalemia, aldosteronopenia, and suppressed plasma renin activity. JAMA. 1968;205(7):492–6. https://doi.org/10.1001/jama.205.7.492.

    Article  CAS  PubMed  Google Scholar 

  78. Akao T, Hayashi T, Kobashi K, Kanaoka M, Kato H, Kobayashi M, et al. Intestinal bacterial hydrolysis is indispensable to absorption of 18 beta-glycyrrhetic acid after oral administration of glycyrrhizin in rats. J Pharm Pharmacol. 1994;46(2):135–7. https://doi.org/10.1111/j.2042-7158.1994.tb03756.x.

    Article  CAS  PubMed  Google Scholar 

  79. Monder C, Stewart PM, Lakshmi V, Valentino R, Burt D, Edwards CR. Licorice inhibits corticosteroid 11 beta-dehydrogenase of rat kidney and liver: in vivo and in vitro studies. Endocrinology. 1989;125(2):1046–53. https://doi.org/10.1210/endo-125-2-1046.

    Article  CAS  PubMed  Google Scholar 

  80. Kato H, Kanaoka M, Yano S, Kobayashi M. 3-Monoglucuronyl-glycyrrhetinic acid is a major metabolite that causes licorice-induced pseudoaldosteronism. J Clin Endocrinol Metab. 1995;80(6):1929–33. https://doi.org/10.1210/jcem.80.6.7775643.

    Article  CAS  PubMed  Google Scholar 

  81. Akao T. Distribution of enzymes involved in the metabolism of glycyrrhizin in various organs of rat. Biol Pharm Bull. 1998;21(10):1036–44. https://doi.org/10.1248/bpb.21.1036.

    Article  CAS  PubMed  Google Scholar 

  82. Ohtake N, Kido A, Kubota K, Tsuchiya N, Morita T, Kase Y, et al. A possible involvement of 3-monoglucuronyl-glycyrrhetinic acid, a metabolite of glycyrrhizin (GL), in GL-induced pseudoaldosteronism. Life Sci. 2007;80(17):1545–52. https://doi.org/10.1016/j.lfs.2007.01.033.

    Article  CAS  PubMed  Google Scholar 

  83. Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res. 2008;22(6):709–24. https://doi.org/10.1002/ptr.2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang ZY, Nixon DW. Licorice and cancer. Nutr Cancer. 2001;39(1):1–11. https://doi.org/10.1207/S15327914nc391_1.

    Article  CAS  PubMed  Google Scholar 

  85. Anger EE, Yu F, Li J. Aristolochic acid-induced nephrotoxicity: molecular mechanisms and potential protective approaches. Int J Mol Sci. 2020;21(3):1157. Published 2020 Feb 10. https://doi.org/10.3390/ijms21031157.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by JSPS KAKENHI Grant Numbers 19K07145, 25871011, and 15K16225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuhiro Uto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Food Factors: Molecular Targets, Mechanisms, Pharmacology and In Vivo Efficacy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uto, T., Fujii, S., Sakamoto, S. et al. Applications of Monoclonal Antibodies Against Natural Compounds for Functional Analysis of Crude Drugs. Curr Pharmacol Rep 6, 192–201 (2020). https://doi.org/10.1007/s40495-020-00224-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-020-00224-7

Keywords

Navigation