Skip to main content

Advertisement

Log in

Epigenetic Alterations of Wnt Signaling Pathways in Nasopharyngeal Carcinoma

  • Epigenetics (ATY Lau, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

The purpose of this study is to discuss the epigenetic alterations of Wnt signaling pathways in nasopharyngeal carcinoma.

Recent findings

Methylomic analyses have revealed that in nasopharyngeal carcinoma, numerous genes in Wnt signaling pathways are hypermethylated, which results in the inactivation of tumor-suppressor genes and aberrant activation of Wnt signaling. Reactivation of the tumor-suppressor genes by demethylation or ectopic expression inhibits the proliferation, metastasis, or stemness of nasopharyngeal carcinoma cells.

Summary

Epigenetic alterations of Wnt signaling pathways contribute to cancer-cell stemness, epithelial-mesenchymal transition, and metastasis during the tumorigenesis of nasopharyngeal carcinoma. Methylated DNAs of Wnt signaling factors hold considerable potential as candidate biomarkers for early detection of nasopharyngeal carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cao S-M, Simons MJ, Qian C-N. The prevalence and prevention of nasopharyngeal carcinoma in China. Chin J Cancer. 2011;30:114–9.

    Article  CAS  Google Scholar 

  2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  Google Scholar 

  3. Zeng Z-Y, Zhou Y-H, Zhang W-L, Xiong W, Fan S-Q, Li X-L, et al. Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol. 2007;38:120–33.

    Article  CAS  Google Scholar 

  4. Li L, Zhang Y, Fan Y, Sun K, Su X, Du Z, et al. Characterization of the nasopharyngeal carcinoma methylome identifies aberrant disruption of key signaling pathways and methylated tumor suppressor genes. Epigenomics. 2014;7:155–73.

    Article  Google Scholar 

  5. Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 2013;25:254–64.

    Article  CAS  Google Scholar 

  6. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36:1461–73.

    Article  CAS  Google Scholar 

  7. Ying Y, Tao Q. Epigenetic disruption of the WNT/beta-catenin signaling pathway in human cancers. Epigenetics. 2009;4:307–12.

    Article  CAS  Google Scholar 

  8. Chan SL, Cui Y, van Hasselt A, Li H, Srivastava G, Jin H, et al. The tumor suppressor Wnt inhibitory factor 1 is frequently methylated in nasopharyngeal and esophageal carcinomas. Lab Invest. 2007;87:644–50.

    Article  CAS  Google Scholar 

  9. Lin Y-C, You L, Xu Z, He B, Mikami I, Thung E, et al. Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun. 2006;341:635–40.

    Article  CAS  Google Scholar 

  10. Tong JH, Ng DC, Chau SL, So KK, Leung PP, Lee TL, et al. Putative tumour-suppressor gene DAB2 is frequently down regulated by promoter hypermethylation in nasopharyngeal carcinoma. BMC Cancer. 2010;10:253.

    Article  CAS  Google Scholar 

  11. Guan Z, Zhang J, Wang J, Wang H, Zheng F, Peng J, et al. SOX1 down-regulates β-catenin and reverses malignant phenotype in nasopharyngeal carcinoma. Mol Cancer. 2014;13:257.

    Article  Google Scholar 

  12. Dai W, Cheung AKL, Ko JMY, Cheng Y, Zheng H, Ngan RKC, et al. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma. Cancer Med. 2015;4:1079–90.

    Article  CAS  Google Scholar 

  13. Peng C, Liu HY, Zhou M, Zhang LM, Li XL, Shen SR, et al. BRD7 suppresses the growth of nasopharyngeal carcinoma cells (HNE1) through negatively regulating beta-catenin and ERK pathways. Mol Cell Biochem. 2007;303:141–9.

    Article  CAS  Google Scholar 

  14. Zhao Z, Liu W, Liu J, Wang J, Luo B. The effect of EBV on WIF1, NLK, and APC gene methylation and expression in gastric carcinoma and nasopharyngeal cancer. J Med Virol. 2017;89:1844–51.

    Article  CAS  Google Scholar 

  15. Li L, Ying J, Tong X, Zhong L, Su X, Xiang T, et al. Epigenetic identification of receptor tyrosine kinase-like orphan receptor 2 as a functional tumor suppressor inhibiting β-catenin and AKT signaling but frequently methylated in common carcinomas. Cell Mol Life Sci. 2014;71:2179–92.

    Article  CAS  Google Scholar 

  16. Wong AMG, Kong KL, Chen L, Liu M, Wong AMG, Zhu C, et al. Characterization of CACNA2D3 as a putative tumor suppressor gene in the development and progression of nasopharyngeal carcinoma. Int J Cancer. 2013;133:2284–95.

    Article  CAS  Google Scholar 

  17. Wong T-S, Kwong DL-W, Sham JS-T, Wei WI, Kwong Y-L, Yuen AP-W. Quantitative plasma hypermethylated DNA markers of undifferentiated nasopharyngeal carcinoma. Clin Cancer Res. 2004;10:2401–6.

    Article  CAS  Google Scholar 

  18. Tong Z-T, Cai M-Y, Wang X-G, Kong L-L, Mai S-J, Liu Y-H, et al. EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co-repressor complex with HDAC1/HDAC2 and snail to inhibit E-cadherin. Oncogene. 2012;31:583–94.

    Article  CAS  Google Scholar 

  19. Li L, Ying J, Li H, Zhang Y, Shu X, Fan Y, et al. The human cadherin 11 is a pro-apoptotic tumor suppressor modulating cell stemness through Wnt/β-catenin signaling and silenced in common carcinomas. Oncogene. 2012;31:3901–12.

    Article  CAS  Google Scholar 

  20. Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, et al. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene. 2006;25:1070–80.

    Article  CAS  Google Scholar 

  21. Chen T, Long B, Ren G, Xiang T, Li L, Wang Z, et al. Protocadherin20 acts as a tumor suppressor gene: epigenetic inactivation in nasopharyngeal carcinoma. J Cell Biochem. 2015;116:1766–75.

    Article  CAS  Google Scholar 

  22. Komiya Y, Habas R. Wnt signal transduction pathways. Organ. 2008;4:68–75.

    Google Scholar 

  23. Chamorro MN, Schwartz DR, Vonica A, Brivanlou AH, Cho KR, Varmus HE. FGF-20 and DKK1 are transcriptional targets of β-catenin and FGF-20 is implicated in cancer and development. EMBO J. 2005;24:73–84.

    Article  CAS  Google Scholar 

  24. van Amerongen R. Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol [Internet]. 2012 [cited 2018 Jan 26];4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3475174/.

  25. Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (review). Int J Oncol. 2017;51:1357–69.

    Article  Google Scholar 

  26. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.

    Article  CAS  Google Scholar 

  27. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38.

    Article  CAS  Google Scholar 

  28. Robertson KD. DNA methylation, methyltransferases, and cancer. Oncogene. 2001;20:3139–55.

    Article  CAS  Google Scholar 

  29. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–95.

    Article  CAS  Google Scholar 

  30. Waldmann T, Schneider R. Targeting histone modifications—epigenetics in cancer. Curr Opin Cell Biol. 2013;25:184–9.

    Article  CAS  Google Scholar 

  31. Kondo Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J. 2009;50:455–63.

    Article  CAS  Google Scholar 

  32. Dai W, Zheng H, Cheung AKL, Lung ML. Genetic and epigenetic landscape of nasopharyngeal carcinoma. Chin Clin Oncol [Internet]. 2016 [cited 2018 Feb 5];5. Available from: http://cco.amegroups.com/article/view/9478.

  33. Scott RS. Epstein–Barr virus: a master epigenetic manipulator. Curr Opin Virol. 2017;26:74–80.

    Article  CAS  Google Scholar 

  34. Tsai C-N, Tsai C-L, Tse K-P, Chang H-Y, Chang Y-S. The Epstein-Barr virus oncogene product, latent membrane protein 1, induces the downregulation of E-cadherin gene expression via activation of DNA methyltransferases. Proc Natl Acad Sci U S A. 2002;99:10084–9.

    Article  CAS  Google Scholar 

  35. Li L-L, Shu X-S, Wang Z-H, Cao Y, Tao Q. Epigenetic disruption of cell signaling in nasopharyngeal carcinoma. Chin J Cancer. 2011;30:231–9.

    Article  Google Scholar 

  36. Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011;469:343–9.

    Article  CAS  Google Scholar 

  37. Cai M-Y, Tong Z-T, Zhu W, Wen Z-Z, Rao H-L, Kong L-L, et al. H3K27me3 protein is a promising predictive biomarker of patients’ survival and chemoradioresistance in human nasopharyngeal carcinoma. Mol Med Camb Mass. 2011;17:1137–45.

    CAS  PubMed  Google Scholar 

  38. Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 2004;14:155–64.

    Article  CAS  Google Scholar 

  39. Hwang C-F, Huang H-Y, Chen C-H, Chien C-Y, Hsu Y-C, Li C-F, et al. Enhancer of zeste homolog 2 overexpression in nasopharyngeal carcinoma: an independent poor prognosticator that enhances cell growth. Int J Radiat Oncol Biol Phys. 2012;82:597–604.

    Article  CAS  Google Scholar 

  40. Cheng Y, Cheung AKL, Ko JMY, Phoon YP, Chiu PM, Lo PHY, et al. Physiological β-catenin signaling controls self-renewal networks and generation of stem-like cells from nasopharyngeal carcinoma. BMC Cell Biol. 2013;14:44.

    Article  CAS  Google Scholar 

  41. Cheyette BNR, Waxman JS, Miller JR, Takemaru K-I, Sheldahl LC, Khlebtsova N, et al. Dapper, a Dishevelled-associated antagonist of β-catenin and JNK signaling, is required for notochord formation. Dev Cell. 2002;2:449–61.

    Article  CAS  Google Scholar 

  42. Kim S, Lee J, Park J, Chung J. BP75, bromodomain-containing M(r) 75,000 protein, binds dishevelled-1 and enhances Wnt signaling by inactivating glycogen synthase kinase-3 beta. Cancer Res. 2003;63:4792–5.

    CAS  PubMed  Google Scholar 

  43. Zhou M, Liu H, Xu X, Zhou H, Li X, Peng C, et al. Identification of nuclear localization signal that governs nuclear import of BRD7 and its essential roles in inhibiting cell cycle progression. J Cell Biochem. 2006;98:920–30.

    Article  CAS  Google Scholar 

  44. Tang L, Nogales E, Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol. 2010;102:122–8.

    Article  CAS  Google Scholar 

  45. Hocevar BA, Mou F, Rennolds JL, Morris SM, Cooper JA, Howe PH. Regulation of the Wnt signaling pathway by disabled-2 (Dab2). EMBO J. 2003;22:3084–94.

    Article  CAS  Google Scholar 

  46. Jiang Y, Luo W, Howe PH. Dab2 stabilizes Axin and attenuates Wnt/beta-catenin signaling by preventing protein phosphatase 1 (PP1)-Axin interactions. Oncogene. 2009;28:2999–3007.

    Article  CAS  Google Scholar 

  47. Jiang Y, He X, Howe PH. Disabled-2 (Dab2) inhibits Wnt/β-catenin signalling by binding LRP6 and promoting its internalization through clathrin. EMBO J. 2012;31:2336–49.

    Article  CAS  Google Scholar 

  48. Kormish JD, Sinner D, Zorn AM. Interactions between SOX factors and Wnt/β-catenin signaling in development and disease. Dev Dyn. 2010;239:56–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kan L, Israsena N, Zhang Z, Hu M, Zhao L-R, Jalali A, et al. Sox1 acts through multiple independent pathways to promote neurogenesis. Dev Biol. 2004;269:580–94.

    Article  CAS  Google Scholar 

  50. Ishitani T, Ninomiya-Tsuji J, Nagai S, Nishita M, Meneghini M, Barker N, et al. The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature. 1999;399:798–802.

    Article  CAS  Google Scholar 

  51. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006;4:e115.

    Article  Google Scholar 

  52. Nomachi A, Nishita M, Inaba D, Enomoto M, Hamasaki M, Minami Y. Receptor tyrosine kinase Ror2 mediates Wnt5a-induced polarized cell migration by activating c-Jun N-terminal kinase via actin-binding protein filamin A. J Biol Chem. 2008;283:27973–81.

    Article  CAS  Google Scholar 

  53. Ho H-YH, Susman MW, Bikoff JB, Ryu YK, Jonas AM, Hu L, et al. Wnt5a–Ror–Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc Natl Acad Sci. 2012;109:4044–51.

    Article  CAS  Google Scholar 

  54. Nelson WJ. Regulation of cell–cell adhesion by the cadherin–catenin complex. Biochem Soc Trans. 2008;36:149–55.

    Article  CAS  Google Scholar 

  55. Nelson WJ, Nusse R. Convergence of Wnt, ß-catenin, and cadherin pathways. Science. 2004;303:1483–7.

    Article  CAS  Google Scholar 

  56. El Hajj N, Dittrich M, Haaf T. Epigenetic dysregulation of protocadherins in human disease. Semin Cell Dev Biol. 2017;69:172–82.

    Article  Google Scholar 

  57. Ganesan R, Mallets E, Gomez-Cambronero J. The transcription factors slug (SNAI2) and snail (SNAI1) regulate phospholipase D (PLD) promoter in opposite ways towards cancer cell invasion. Mol Oncol. 2016;10:663–76.

    Article  CAS  Google Scholar 

  58. Xu Y, Yang Z, Yuan H, Li Z, Li Y, Liu Q, et al. PCDH10 inhibits cell proliferation of multiple myeloma via the negative regulation of the Wnt/β-catenin/BCL-9 signaling pathway. Oncol Rep. 2015;34:747–54.

    Article  CAS  Google Scholar 

  59. Zhao Y, Yang Y, Trovik J, Sun K, Zhou L, Jiang P, et al. A novel Wnt regulatory axis in endometrioid endometrial cancer. Cancer Res. 2014;74:5103–17.

    Article  CAS  Google Scholar 

  60. Zhang X, Hao J. Development of anticancer agents targeting the Wnt/β-catenin signaling. Am J Cancer Res. 2015;5:2344–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tulalamba W, Janvilisri T. Nasopharyngeal carcinoma signaling pathway: an update on molecular biomarkers [Internet]. Int J Cell Biol. 2012 [cited 2018 May 15]. Available from: https://www.hindawi.com/journals/ijcb/2012/594681/.

  62. Qureshi SA, Bashir MU, Yaqinuddin A. Utility of DNA methylation markers for diagnosing cancer. Int J Surg. 2010;8:194–8.

    Article  Google Scholar 

  63. Yang X, Dai W, Kwong DL, Szeto CYY, Wong EH, Ng WT, et al. Epigenetic markers for noninvasive early detection of nasopharyngeal carcinoma by methylation-sensitive high resolution melting. Int J Cancer. 2015;136:E127–35.

    Article  CAS  Google Scholar 

  64. Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des. 2012;19:634–64.

    Article  Google Scholar 

  65. Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13:513–32.

    Article  CAS  Google Scholar 

  66. Chan KC, Chan LS, Ip JCY, Lo C, Yip TTC, Ngan RKC, et al. Therapeutic targeting of CBP/β-catenin signaling reduces cancer stem-like population and synergistically suppresses growth of EBV-positive nasopharyngeal carcinoma cells with cisplatin. Sci Rep. 2015;5:9979.

    Article  CAS  Google Scholar 

  67. Cheng Y, Phoon YP, Jin X, Chong SYS, Ip JCY, Wong BWY, et al. Wnt-C59 arrests stemness and suppresses growth of nasopharyngeal carcinoma in mice by inhibiting the Wnt pathway in the tumor microenvironment. Oncotarget. 2015;6:14428–39.

    PubMed  PubMed Central  Google Scholar 

  68. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203–22.

    Article  CAS  Google Scholar 

  69. Lee KT-W, Tan J-K, Lam AK-Y, Gan S-Y. MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: a critical review. Crit Rev Oncol Hematol. 2016;103:1–9.

    Article  Google Scholar 

  70. Konze SA, van Diepen L, Schröder A, Olmer R, Möller H, Pich A, et al. Cleavage of E-cadherin and β-catenin by calpain affects Wnt signaling and spheroid formation in suspension cultures of human pluripotent stem cells. Mol Cell Proteomics. 2014;13:990–1007.

    Article  CAS  Google Scholar 

  71. Arthur JS, Elce JS, Hegadorn C, Williams K, Greer PA. Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol. 2000;20:4474–81.

    Article  CAS  Google Scholar 

  72. Hu H, Wang G, Li C. miR-124 suppresses proliferation and invasion of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway by targeting Capn4. Onco Targets Ther. 2017;10:2711–20.

    Article  Google Scholar 

  73. Liu C, Li G, Yang N, Su Z, Zhang S, Deng T, et al. miR-324-3p suppresses migration and invasion by targeting WNT2B in nasopharyngeal carcinoma. Cancer Cell Int. 2017;17:2.

    Article  Google Scholar 

  74. Liu C, Li G, Ren S, Su Z, Wang Y, Tian Y, et al. miR-185-3p regulates the invasion and metastasis of nasopharyngeal carcinoma by targeting WNT2Bin vitro. Oncol Lett. 2017;13:2631–6.

    Article  CAS  Google Scholar 

  75. Li G, Liu Y, Su Z, Ren S, Zhu G, Tian Y, et al. MicroRNA-324-3p regulates nasopharyngeal carcinoma radioresistance by directly targeting WNT2B. Eur J Cancer Oxf Engl. 2013;49:2596–607.

    Article  CAS  Google Scholar 

  76. Li G, Wang Y, Liu Y, Su Z, Liu C, Ren S, et al. miR-185-3p regulates nasopharyngeal carcinoma radioresistance by targeting WNT2B in vitro. Cancer Sci. 2014;105:1560–8.

    Article  CAS  Google Scholar 

  77. Xia H, Ng SS, Jiang S, Cheung WKC, Sze J, Bian X-W, et al. miR-200a-mediated downregulation of ZEB2 and CTNNB1 differentially inhibits nasopharyngeal carcinoma cell growth, migration and invasion. Biochem Biophys Res Commun. 2010;391:535–41.

    Article  CAS  Google Scholar 

  78. Giroldi LA, Bringuier PP, de Weijert M, Jansen C, van Bokhoven A, Schalken JA. Role of E boxes in the repression of E-cadherin expression. Biochem Biophys Res Commun. 1997;241:453–8.

    Article  CAS  Google Scholar 

  79. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell. 2001;7:1267–78.

    Article  CAS  Google Scholar 

  80. Thakore PI, Black JB, Hilton IB, Gersbach CA. Editing the epigenome: technologies for programmable transcriptional modulation and epigenetic regulation. Nat Methods. 2016;13:127–37.

    Article  CAS  Google Scholar 

  81. Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res. 2012;40:6725–40.

    Article  CAS  Google Scholar 

  82. Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33:510–7.

    Article  CAS  Google Scholar 

  83. Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016;44:5615–28.

    Article  CAS  Google Scholar 

  84. Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv. 2017;35:95–104.

    Article  CAS  Google Scholar 

  85. Cano-Rodriguez D, Rots MG. Epigenetic editing: on the verge of reprogramming gene expression at will. Curr Genet Med Rep. 2016;4:170–9.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mr. Bill K. T. Hau for his assistance in figure preparation. This work was supported by grants from Hong Kong Research Grants Council (General Research Fund and Theme-based Research Scheme), Hong Kong University Grants Committee (Area of Excellence Scheme), Shenzhen Science and Technology Committee Research Grant (JCYJ20170818113915877, CKFW2016082916015476, and ZDSYS201707281432317), and the Innovation and Technology Commission (ITCPD/17-9) of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Z. Qi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epigenetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Fu, L. & Qi, R.Z. Epigenetic Alterations of Wnt Signaling Pathways in Nasopharyngeal Carcinoma. Curr Pharmacol Rep 4, 337–345 (2018). https://doi.org/10.1007/s40495-018-0150-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-018-0150-5

Keywords

Navigation