Skip to main content
Log in

The principle diurnal and semidiurnal tides of the ocean loading displacements and their long-term variability as observed by VLBI

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

In this study, the amplitudes and Greenwich phase-lags of the principal semidiurnal tides and the diurnal tides of the ocean tide loading displacements (OTLD) were estimated at the worldwide distributed 37 Very Long Baseline Interferometry (VLBI) stations using 36 years of geodetic VLBI observations from 1984 to 2020. Then, the level of agreement was assessed between the OTLD observed by the VLBI space geodesy technique and those of the recent global ocean tide models (GOTM), among others TPXO9-Atlas (Egbert and Erofeeva 2002), FES2014b (Carrère et al. 2012, 2016) and GOT4.10c (Ray 2013). Finally, the long-term, i.e. over the last three decades, variations of the principal semidiurnal and diurnal tidal constituents of OTLD as observed by VLBI were investigated. The lunar only M2 tide radial phasor vector differences between the VLBI OTLD model and the GOTM are revealed as the largest among all the principal tides and the coordinate components. The root-mean-square misfits of the phasor vectors between the VLBI OTLD model and the GOTM are found as the largest for the radial components over the coastal sites at the lunar M2 (from 0.9 to 1.0 mm) and O1 tides (0.4–0.5 mm), the solar S2 tide (0.5–0.6 mm), and the luni-solar K1 tide (0.4–0.5 mm). The best agreement of the VLBI OTLD model is found with the GOT4.10c in tangential components and the TPXO9-Atlas in radial components. Long-term variations are detected in the semidiurnal and diurnal tidal coefficients, i.e. the amplitudes and the Greenwich phase-lags from the sequential solutions of the Kalman filter. These variations, resembling quasi-periodic oscillations, are more evident at the M2, K2, K1, and O1 tides and larger in amplitudes at the coastal stations in radial components. The radial amplitudes and phase-lags of the K1 and O1 tides vary for all stations up to about 1.2 mm and 12 degrees, respectively. The long-term, i.e. over the last three decades, variations of the principal semidiurnal and diurnal tides of OTLD are found as affected to a large extent by the long-term mean sea level rise or falls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Allinson CR, Clarke PJ, Edwards SJ, King MA, Baker TF, Cruddace PR (2004) Stability of direct GPS estimates of ocean tide loading. Geophys Res Lett 31:L15603

    Google Scholar 

  • Altamimi Z, Rebischung P, Métivier L, Xavier C (2016) ITRF2014: A new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res: Solid Earth 121:6109–6131

    Google Scholar 

  • Agnew DC (1996) SPOTL: some programs for ocean-tide loading. Scripps Institution of Oceanography, SIO Reference Series 96–8, 35 pp., Scripps Inst. Of Oceanogr., La Jolla, California

  • Agnew DC (1997) NLOADF: A program for computing ocean-tide loading. J Geophys Res 102(B3):5109–5110

    Google Scholar 

  • Arbic BK (2005) Atmospheric forcing of the oceanic semidiurnal tide. Geophys Res Lett 32:L02610

    Google Scholar 

  • Arbic BK, Garrett C (2010) A coupled oscillator model of shelf and ocean tides. Cont Shelf Res 30(6):564–574

    Google Scholar 

  • Behrend D (2013) Data handling within the international VLBI service. Data Sci J 12:WDS81–WDS84

    Google Scholar 

  • Bizouard C, Lambert S, Gattano C, Becker O, Yves Richard J (2019) The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J Geod 93(5):621–633

    Google Scholar 

  • Böhm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for medium-range weather forecasts operational analysis data. J Geophys Res 111:B02406

    Google Scholar 

  • Böhm J, Schuh H (2013) Very long baseline interferometry for geodesy and astrometry (Chapter 7) In: Guochang X (ed.) Sciences of Geodesy-II innovations and future developments, ISBN 978-3-642-28000-9 (eBook), Springer, Heidelberg, New York, Dordrecht, London, pp 339–376

  • Böhm J, Böhm S, Boisits J, Girdiuk A, Gruber J, Hellerschmied A, Krasna H, Landskron D, Madzak M, Mayer D, McCallum J, McCallum L, Schartner M, Teke K (2018) Vienna VLBI and Satellite Software (VieVS) for Geodesy and Astrometry. Publ Astronom Soc Pacific 130(986):044503

    Google Scholar 

  • Baisch S, Bokelmann G-HR (1999) Spectral analysis with incomplete time series: an example from seismology. Comput Geosci 25:739–750

    Google Scholar 

  • Baker TF, Curtis DJ, Dodson AH (1995) Ocean tide loading and GPS. GPS World 6(3):54–59

    Google Scholar 

  • Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2):2103

    Google Scholar 

  • Bos MS, Baker TF (2005) An estimate of the errors in gravity ocean tide loading computations. J Geod 79(1):50–63

    Google Scholar 

  • Bos MS, Scherneck H-G (2013) Computation of Green’s Functions for Ocean Tide Loading Chapter 1. In: Guochang X (ed) Sciences of geodesy - II: Innovations and future developments. Springer, Berlin, pp 1–52

    Google Scholar 

  • Campbell J (1979) Die Radiointerferometrie auf langen Basen als geodätisches Messprinzip hoher Genauigkeit, DGK Reihe C, Heft 254. Verlag des Instituts für Angewandte Geodäsie, Frankfurt am Main

    Google Scholar 

  • Campbell J (2004) VLBI for Geodesy and Geodynamics. In: Mantovani F, Kus A (eds) The Role of VLBI in Astrophysics, Astrometry and Geodesy. Kluwer Academic Publishers, New York, pp 359–381

    Google Scholar 

  • Carrère L, Lyard, Cancet M, Guillot A, Roblou L (2012) A new global tidal model taking advantage of nearly 20 years of altimetry. In: Proceedings of Meeting “20 Years of Altimetry”, Venice

  • Carrère L, Lyard F, Cancet M, Guillot A, Picot N (2016) Finite Element Solution FES2014, a new tidal model - Validation results and perspectives for improvements, presentation to ESA Living Planet Conference, Prague

  • Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis from space geodetic data. J Geophys Res 102(B9):20489–20502

    Google Scholar 

  • Church JA, White NJ (2011) Sea level rise from the late 19th to the Early 21st Century. Surv Geophys 32(4–5):418–425

    Google Scholar 

  • Colosi JA, Munk W (2006) Tales of the venerable Honolulu tide gauge. J Phys Oceanogr 36:967–996

    Google Scholar 

  • Dach R, Dietrich R (2001) The ocean loading effect in the GPS analysis: a case study in the antarctic peninsula region. Mar Geodesy 24(1):13–25

    Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20(6):1593–1607

    Google Scholar 

  • Davis JL, Elgered G, Niell AE, Kuehn CE (1993) Ground-based measurements of gradients in the “wet” radio refractivity of air. Radio Sci 28(6):1003–1018

    Google Scholar 

  • Devlin AT, Jay DA, Zaron ED, Talke SA, Pan J, Lin H (2017) Tidal variability related to sea level variability in the Pacific Ocean. Journal of Geophysical Research: Oceans 122:8445–8463

    Google Scholar 

  • Doodson AT (1921) The harmonic development of the tide-generating potential. Proceedings of the Royal Society a: Mathematical, Physical and Engineering Sciences 100(704):305–329

    Google Scholar 

  • Dragert H, James TS, Lambert A (2000) Ocean loading corrections for continuous GPS: A case study at the Canadian coastal site Holberg. Geophys Res Lett 27(14):2045–2048

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Int 25:297–356

    Google Scholar 

  • Eanes RJ, Shuler A (1999) An improved global ocean tide model from TOPEX/Poseidon altimetry: CSR4.0, in European Geophysical Society, 24th General Assembly, The Hague

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Oceano Technol 19(2):183–204

    Google Scholar 

  • Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys Space Phys 10(3):761–797

    Google Scholar 

  • Farrell WE (1973) Earth tides, ocean tides and tidal loading. Philosophical Transactions of the Royal Society of London. Series a 274:253–259

    Google Scholar 

  • Fey AL, Gordon D, Jacobs CS, Ma C, Gaume RA, Arias EF, Bianco G, Boboltz DA, Böckmann S, Bolotin S, Charlot P, Collioud A, Engelhardt G, Gipson J, Gontier AM, Heinkelmann R, Kurdubov S, Lambert S, Lytvyn S, MacMillan DS, Malkin Z, Nothnagel A, Ojha R, Skurikhina E, Sokolova J, Souchay J, Sovers OJ, Tesmer V, Titov O, Wang G, Zharov V (2015) The second realization of the international celestial reference frame by very long baseline interferometry. Astron J 150(2):58

    Google Scholar 

  • Foreman M (1977) Manual for tidal heights analysis and prediction. Pac Mar Sci Rep 77–10:1–58

    Google Scholar 

  • Godin G (1972) The Analysis of Tides, Univ. of Toronto Press, Toronto, Ont., Canada

  • Haas R, Schuh H (1998) Ocean loading observed by geodetic VLBI, in Proceedings of the 13th International Symposium on Earth Tides, edited by B. Ducarme and P. Paquet, pp 111–120

  • Haigh ID, Pickering MD, Green JAM, Arbic BK, Arns A, Dangendorf S, Hill DF, Horsburgh K, Howard T, Idier D, Jay DA, Jänicke L, Lee SB, Müller M, Schindelegger M, Talke SA, Wilmes SB, Woodworth PL (2019) The tides they are a-changin': A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms and future implications. Reviews of Geophysics, 57, e2018RG000636

  • Hartmann T, Wenzel H-G (1995) The HW95 tidal potential catalogue. Geophys Res Lett 22(24):3553–3556

    Google Scholar 

  • Holgate SJ, Woodworth PL (2004) Evidence for enhanced coastal sea level rise during the 1990s. Geophys Res Lett 31:L07305

    Google Scholar 

  • Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2013) New data systems and products at the permanent service for mean sea level. J Coastal Res 29:493–504

    Google Scholar 

  • Jungclaus JH, Fischer N, Haak H, Lohmann K, Marotzke J, Matei D, Mikolajewicz U, Notz D, vonStorch JS (2013) Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI-Earth system model. J Adv Model Earth Syst 5:422–446

    Article  Google Scholar 

  • Kálmán RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 82:35–45

    Google Scholar 

  • Khan SA, Tscherning CC (2001) Determination of semi-diurnal ocean tide loading constituents using GPS in Alaska. Geophys Res Lett 28(11):2249–2252

    Google Scholar 

  • Khan SA, Scherneck HG (2003) The M2 ocean tide loading wave in Alaska: Vertical and horizontal displacements, modelled and observed. J Geod 77(3–4):117–127

    Google Scholar 

  • King MA, Penna NT, Clarke PJ, King EC (2005) Validation of ocean tide models around Antarctica usingonshore GPS and gravity data. J Geophys Res 110:B08401

    Google Scholar 

  • King MA (2006) Kinematic and static GPS techniques for estimating tidal displacements with application to Antarctica. J Geodyn 41(1–3):77–86

    Google Scholar 

  • Lambeck K (1988) Geophyscial geodesy-The slow deformations of the Earth. Oxford University Press, Oxford

    Google Scholar 

  • Landskron D, Böhm J (2017) VMF3/GPT3: refined discrete and empirical troposphere mapping functions. J Geod 92:349–360

    Google Scholar 

  • Le Provost C, Genco ML, Lyard F, Vincent P, Canceil P (1994) Spectroscopy of theworld ocean tides from a finite-element hydrodynamic model. J Geophys Res 99(C12):24777–24797

    Google Scholar 

  • Lefévre F, Lyard FH, Le Provost C, Schrama EJO (2002) FES99: A global tide finite element solutions assimilating tide gauge and altimetric information. J Atmos Ocean Technol 19(9):1345–1356

    Google Scholar 

  • Longman IM (1962) A Green’s function for determining the deformation of the Earth under surface mass loads, 1. Theory J Geophys Res 67(2):845–850

    Google Scholar 

  • Longman IM (1963) A Green’s function for determining the deformation of the Earth under surface mass loads, 2. Computation and Numerical Results. J Geophys Res 68(2):485–496

    Google Scholar 

  • Lyard F, Lefévre F, Letellier T, Francis O (2006) Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn 56(5–6):394–415

    Google Scholar 

  • McCarthy DD (ed.) (1996) IERS Technical Note 21. IERS Conventions (1996), International Earth Rotation and Reference Systems Service (IERS). Verlag des BundesamtesfürKartographie und Geodasie, Frankfurt am Main

  • Martens HR, Simons M, Owen S, Rivera L (2016) Observations of ocean tidal response in South America from subdaily GPS positions. Geophys j Int 205:1637–1664

    Google Scholar 

  • Matsumoto K, Takanezawa T, OoeM, (2000) Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J Oceanogr 56:567–581

    Google Scholar 

  • Matsumoto K, Sato T, Takanezawa T, Ooe M (2001) GOTIC2: A program for computation of oceanic tidal loading effect. J GeodSoc Japan 47:243–248

    Google Scholar 

  • Melachroinos SA, Biancale R, Llubes M, Perosanz F, Lyard F, Vergnolle M, Bouin MN, Masson F, Nicolas J, Morel L, Durand S (2008) Ocean tide loading (OTL) displacements from global and local grids: comparisons to GPS estimates over the shelf Brittany. France, J Geod 82(6):357–371

    Google Scholar 

  • Merrifield MA (2011) A shift in Western tropical Pacific sea level trends during the 1990s. J Clim 24:4126–4138

    Google Scholar 

  • Munk WH, Bullard EC (1963) Patching the long-wave spectrum across the tides. J Geophys Res 68(12):3627–3634

    Google Scholar 

  • Munk WH, Zetler BD, Groves GW (1965) Tidal Cusps. Geophys j 10(2):211–219

    Google Scholar 

  • Munk WH (1997) Once again: once again-tidal friction. Prog Oceanog 40:7–35

    Google Scholar 

  • Müller M, Arbic BK, Mitrovica J (2011) Secular trends in ocean tides: Observations and model results. J Geophys Res 116:C05013

    Google Scholar 

  • Müller M (2011) Rapid change in semi-diurnal tides in the North Atlantic since 1980. Geophys Res Lett 38:L11602

    Google Scholar 

  • Müller M (2012) The influence of changing stratification conditions on barotropic tidal transport. Cont Shelf Res 47(15):107–188

    Google Scholar 

  • Nothnagel A (1991) Radiointerferometrische Beobachtungen zur Bestimmung der Polbewegung unter Benutzug langer Nord-Süd-Basislinien, DGK Reihe C, Heft 368. Verlag des Instituts für Angewandte Geodäsie, Frankfurt am Main

    Google Scholar 

  • Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83(8):787–792

    Google Scholar 

  • Nothnagel A, Artz T, Behrend D, Malkin Z (2017) International VLBI Service for Geodesy and Astrometry–Delivering high-quality products and embarking on observations of the next generation. J Geodesy 91(7):711–721

    Google Scholar 

  • Padman L, Erofeeva S (2004) A barotropic inverse tidal model for the Arctic Ocean. J Geophys Res Letters 31:L02303

    Google Scholar 

  • Penna NT, Clarke PJ, Bos MS, Baker TF (2015) Ocean tide loading displacements in western Europe: 1. Validation of Kinematic GPS estimates. J Geophys Res Solid Earth 120:6523–6539

    Google Scholar 

  • Petit G, Luzum B (2010) IERS Conventions 2010, IERS Technical Note; 36. Verlag des Bundesamts für Kartographie und Geodasie, Frankfurt am Main

    Google Scholar 

  • Petrov L, Ma CP (2003) Study of harmonic site position variations determined by very long baseline interferometry. J Geophys Res 108(B4):2190

    Google Scholar 

  • Pickering MD, Wells NC, Horsburgh KJ, Green JAM (2012) The impact of future sea-level rise on the European Shelf tides. Cont Shelf Res 35:1–15

    Google Scholar 

  • Ray RD (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. NASA Tech Memo TM-209478, 58 pp

  • Ray RD (2013) Precise comparisons of bottom-pressure and altimetric ocean tides. J Geophys Res: Oceans 118(9):4570–4584

    Google Scholar 

  • Ray RD, Mitchum GT (1997) Surface manifestation of internal tides in the deep ocean: observations from altimetry and island gauges. Prog Oceanog 40:135–162

    Google Scholar 

  • Roberts DH, Lehar J, Dreher JW (1987) Time series analysis with CLEAN. I. Derivation of a spectrum. Astronom J 93(4):968–989

    Google Scholar 

  • Roy AW, Derek GG, Rob GB (2001) Ocean tides around New Zealand. NZ J Mar Freshwat Res 35(3):567–579

    Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, In: The use of artificial satellites for geodesy, Geophys. Monogr. Ser. 15, Amer. Geophys. Union, pp. 274–251

  • Saastamoinen J (1973) Contribution to the theory of atmospheric refraction (in three parts). Bull Geod 105–107:279–298

    Google Scholar 

  • Schenewerk MS, Marshall J, Dillinger W (2001) Vertical ocean-loading deformations derived from a global GPS network. J Geod Soc Jpn 47(1):237–242

    Google Scholar 

  • Scherneck H-G (1991) A parameterized solid earth tide model and ocean tide loading effects for global geodetic baseline measurements. Geophys J Int 106(3):677–694

    Google Scholar 

  • Scherneck H-G (1999) Explanatory supplement to the section “Local site displacement due to ocean loading” of the IERS Conventions 1996 Chapters 6 and 7. DGFI Report 71. Schuh H., ed. Verlag des BundesamtesfürKartographie und Geodasie, Frankfurt am Main, pp. 19–23

  • Schuh H (1987) Die Radiointerferometrie auf langen Basen zur Bestimmung von Punktverschiebungen und Erdrotationsparametern, DGK Reihe C, Heft 328. Verlag der Bayerischen Akademie der Wissenschaften, München

    Google Scholar 

  • Schuh H, Möhlmann L (1989) Ocean loading station displacements observed by VLBI. Geophys Res Lett 16:1105–1108

    Google Scholar 

  • Schuh H, Behrend D (2012) VLBI: A fascinating technique for geodesy and astrometry. J Geodyn 61:68–80

    Google Scholar 

  • Schwiderski EW (1980) On charting global ocean tides. Rev. Geophys. Space Phys. 18(1):243–268

    Google Scholar 

  • Sovers OJ (1994) Vertical ocean loading amplitudes from VLBI measurements. Geophys Res Lett 21:357–360

    Google Scholar 

  • Sovers OJ, Fanselow JL, Jacobs CS (1998) Astrometry and geodesy with radio interferometry: experiments, models, results. Rev Modern Phys 70(4):1393–1454

    Google Scholar 

  • Tamura Y (1987) A harmonic development of the tide-generating potential. Bull Inf Mar Terr 99:6813–6857

    Google Scholar 

  • Teague WJ, Perkins IHT, Hallock ZR, Jacobs GA (1998) Current and tide observations in the southern Yellow Sea. J Geophys Res 103(C12):27783–27793

    Google Scholar 

  • Teke K (2011) Sub-daily parameter estimation in VLBI data analysis, Geowissenschaftliche Mitteilungen, Heft Nr. 87, Vienna University of Technology, Vienna, Austria. Grafisches Zentrum HTU GmbH, ISSN 1811–8380

  • Teke K (2020) M2 constituent of ocean tide loading displacements from VLBI CONT14 hourly sessions. Ann Geophys 63(3):1–19

    Google Scholar 

  • Thomas ID, King MA, Clarke PJ (2007) A comparison of GPS VLBI and model estimates of ocean tide loading displacements. J Geod 81(5):359–368

    Google Scholar 

  • Wijaya DD, Böhm J, Karbon M, Krásná H, Schuh H (2013) Atmospheric pressure loading. In: Böhm J, Schuh H (eds) Atmospheric effects in space geodesy. Springer Verlag, Berlin, pp 137–157

    Google Scholar 

  • Woodworth PL (2010) A survey of recent changes in the main components of the ocean tide. Cont Shelf Res 30(15):1680–1691

    Google Scholar 

  • Vergnolle M, Bouin M-N, Morel L, Masson F, Durand S, Nicolas J, Melachroinos SA (2008) GPS estimates of ocean tide loading in NW-France: Determination of ocean tide loading constituents and comparison with a recent ocean tide model. Geophys J Int 173(2):444–458

    Google Scholar 

  • Vey S, Calais E, Llubes M, Florsch N, Woppelmann G, Hinderer J, Amalvict M, Lalancette MF, Simon B, Duquenne F, Haase JS (2002) GPS measurements of ocean loading and its impact on zenith tropopsheric delay estimates: a case study in Brittany. France, J Geod 76:419–427

    Google Scholar 

  • Yuan L, Chao BF, Ding X, Zhong P (2013) The tidal displacement field at Earth’s surface determined using global GPS observations. J Geophys Res Solid Earth 118:2618–2632

    Google Scholar 

  • Yun H-S, Lee DH, Song DS (2007) Determination of vertical displacements over the coastal area of Korea due to the ocean tide loading using GPS observations. J Geodyn 43(3–5):528–541

    Google Scholar 

  • Zahran KH, Jentzsch G, Seeber G (2006) Accuracy assessment of ocean tide loading computations for precise geodetic observations. J Geodyn 42:159–174

    Google Scholar 

Download references

Acknowledgements

This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK), project number: 115Y244. The author acknowledges the International VLBI Service for Geodesy and Astrometry (IVS, Nothnagel et al. 2017, Behrend 2013, Schuh and Behrend 2012) for providing the observations of IVS daily sessions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Teke.

Ethics declarations

Conflict of interest

The author declares that no conflict of interest exists in the submission of this manuscript.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teke, K. The principle diurnal and semidiurnal tides of the ocean loading displacements and their long-term variability as observed by VLBI. Acta Geod Geophys 56, 231–261 (2021). https://doi.org/10.1007/s40328-021-00340-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-021-00340-w

Keywords

Navigation