Skip to main content
Log in

Long-Term Evaluation of Ocean Tidal Variation Models of Polar Motion and UT1

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Recent improvements in the development of VLBI (very long baseline interferometry) and other space geodetic techniques such as the global navigation satellite systems (GNSS) require very precise a-priori information of short-period (daily and sub-daily) Earth rotation variations. One significant contribution to Earth rotation is caused by the diurnal and semi-diurnal ocean tides. Within this work, we developed a new model for the short-period ocean tidal variations in Earth rotation, where the ocean tidal angular momentum model and the Earth rotation variation have been setup jointly. Besides the model of the short-period variation of the Earth’s rotation parameters (ERP), based on the empirical ocean tide model EOT11a, we developed also ERP models, that are based on the hydrodynamic ocean tide models FES2012 and HAMTIDE. Furthermore, we have assessed the effect of uncertainties in the elastic Earth model on the resulting ERP models. Our proposed alternative ERP model to the IERS 2010 conventional model considers the elastic model PREM and 260 partial tides. The choice of the ocean tide model and the determination of the tidal velocities have been identified as the main uncertainties. However, in the VLBI analysis all models perform on the same level of accuracy. From these findings, we conclude that the models presented here, which are based on a re-examined theoretical description and long-term satellite altimetry observation only, are an alternative for the IERS conventional model but do not improve the geodetic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alterman, Z., Jarosch, H., & Pekeris, C. (1961). Propagation of rayleigh waves in the earth. Geophysical Journal International, 4, 219–241.

    Article  Google Scholar 

  • Artz, T., Tesmer, S., & Nothnagel, A. (2011). Assessment of periodic sub-diurnal Earth rotation variations at tidal frequencies through transformation of the VLBI normal equations. Journal of Geodesy, 85, 565–584.

    Article  Google Scholar 

  • Bachmann, S., Thaller, D., Roggenbuck, O., Lösler, M., & Messerschmitt, L. (2016). IVS contribution to ITRF2014. Journal of Geodesy, 90, 631–654. https://doi.org/10.1007/s00190-016-0899-4.

    Article  Google Scholar 

  • Bennett, A. F. (1992). Inverse methods in physical oceanography (p. 347). New York: Cambridge University Press.

    Book  Google Scholar 

  • Böhm, S., Brzezinski, A., & Schuh, H. (2011). Complex demodulation in VLBI estimation of high frequency Earth rotation components. Journal of Geodesy, 62, 56–68.

    Google Scholar 

  • Brosche, P., Wünsch, J., Campbell, J., & Schuh, H. (1991). Ocean tide effects in universal time detected by VLBI. Astronomy and Astrophysics, 245, 676–682.

    Google Scholar 

  • Brosche, P., Wünsch, J., Seiler, U., & Sndermann, J. (1989). Periodic changes in due to oceanic tides. Astronomy and Astrophysics, 220, 318–320.

    Google Scholar 

  • Brzezinski, A. (1994). Polar motion excitation by variations of the effective angular momentum function, II: Extended-model. Manuscripta Geodaetica, 19, 157–171.

    Google Scholar 

  • Bullen, K., & Haddon, R. (1967). Earth models based on compressible theory. Physics of the Earth and Planetary Interiors, 1, 1–13.

    Article  Google Scholar 

  • Carrere, L., Lyard, F., Cancet, M., Guillot, A., & Roblou, L. (2012). FES2012: A new global tidal model taking advantage of nearly 20 years of altimetry. In: Proceedings of Meeting 20 Years of Altimetry, Venice.

  • Cartwright, David E., & Ray, Richard D. (1991). Energetics of global ocean tides from Geosat altimetry. Journal of Geophysical Research: Oceans, 96, 16897–16912.

    Article  Google Scholar 

  • Chao, B. F., & Ray, R. D. (1997). Oceanic tidal angular momentum and Earths rotation variations. Progress in Oceanography, 40, 399–421. (Pergamon).

    Article  Google Scholar 

  • Dziewonski, A., & Anderson, D. (1981). Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.

    Article  Google Scholar 

  • Egbert, G., Bennett, A., & Foreman, M. (1994). TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research: Oceans, 99(C12), 24821–24852.

    Article  Google Scholar 

  • Gilbert, F., & Dziewonski, A. (1975). An application of normal mode theory to the retrieval of structural parameters and source mechanism from seismic spectra. Philosophical Transactions of the Royal Society A, 278, 187–269.

    Article  Google Scholar 

  • Gross, R. S. (2007). Earth rotation variations—Long period. In T. A. Herring (Ed.), Physical geodesy, Treatise on geophysics (vol. 3, pp. 239–294). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Gross, R. (1993). The effect of ocean tides on the Earths rotation as predicted by the results of an ocean tide model. Geophysical Research Letters, 20, 293–296.

    Article  Google Scholar 

  • Hartmann, T., & Wenzel, H.-G. (1995). The HW95 tidal potential catalogue. Geophysical Research Letters, 22, 3553–3556.

    Article  Google Scholar 

  • Henderscott, M. C. (1972). The effects of solid earth deformation on global ocean tides. Geophysical Journal International, 29, 389–402.

    Article  Google Scholar 

  • Koot, L., & de Viron, O. (2011). Atmospheric contributions to nutations and implications for the estimation of deep Earth’s properties from nutation observations. Geophysical Journal International, 185, 1255–1265. https://doi.org/10.1111/j.1365-246X.2011.05026.x.

    Article  Google Scholar 

  • Le Provost, C., Genco, M. L., Lyard, F., Vincent, P., & Canceil, P. (1994). Spectroscopy of the world ocean tides from a finite element hydrodynamic model. Journal of Geophyical Research, 99(C12), 24777–24797. https://doi.org/10.1029/94JC01381.

    Article  Google Scholar 

  • Lyard, F., Lefevre, F., Letellier, T., & Francis, O. (2006). Modelling the global ocean tides: modern insight from FES2004. Ocean Dynamics, 56, 394–415.

    Article  Google Scholar 

  • Madzak, M., Schindelegger, M., Böhm, J., Bosch, W., & Hagedoorn, J. (2016). High-frequency Earth rotation variation deduced from altimetry-based ocean tides. Journal of Geodesy, 90, 1237–1253.

    Article  Google Scholar 

  • McCarthy, D. D. (ed.) (1996). IERS conventions. (IERS Technical Note: 21). Paris: Central Bureau of IERS-Observatoire de Paris, p. 97.

  • Munk, W. H., & Cartwright, D. E. (1966). Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society, 263, 1–50.

    Google Scholar 

  • Munk, W. H., & MacDonald, G. J. F. (1960). The rotation of the earth. New York: Cambridge University Press.

    Google Scholar 

  • Nothnagel, A., Alef, W., Amagai, J., Andersen, P. H., Andreeva, T., Artz, T., et al. (2015). The IVS data input to ITRF2014. International VLBI Service for Geodesy and Astrometry: IVS, GFZ Data Services.

  • Petit, G., & Luzum. B. (eds.) (2010). IERS conventions.

  • Pugh, D., & Woodworth, P. (2014). Sea-level science: Understanding tides, surges, tsunamis and mean sea-level changes. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Ray, R. (1998). Ocean self-attraction and loading in numerical tidal models. Marine Geodesy, 21, 181–192. https://doi.org/10.1080/01490419809388134.

    Article  Google Scholar 

  • Ray, R. (2001). Inversion of oceanic tidal currents from measured elevations. Journal of Marine Systems, 28, 1–18.

    Article  Google Scholar 

  • Sasao, T., Okubo, S., & Sato, M. (1980). A simple theory on dynamical effects of stratified fluid core upon nutational motion of the Earth. In: R. L. Duncombe (Ed.), Proceedings from IAU Symposium no. 78 held in Kiev, USSR 23–28 May, 1977. International Astronomical Union. Symposium no. 78. Nutation and the Earth's Rotation (p. 165). Dordrecht: D. Reidel Pub. Co.

    Google Scholar 

  • Sasao, T., & Wahr, J. (1981). An excitation mechanism for the free core nutation. Geophysical Journal International, 64, 729–746.

    Article  Google Scholar 

  • Savcenko, R., & Bosch, W. (2012). EOT11a—Empirical ocean tide model from multi-mission satellite altimetry. 89, Deutsches Geodätisches Forschungsinstitut (DGFI), München.

  • Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrre, L., et al. (2014). Accuracy assessment of global barotropic ocean tide models. Reviews of Geophysics, 52(3), 1944–9208.

    Article  Google Scholar 

  • Taguchi, E., Stammer, D., & Zahel, W. (2014). Inferring deep ocean tidal energy dissipation from the global high-resolution data-assimilative HAMTIDE model. Journal of Geophysical Research: Oceans, 119, 4573–4592.

    Google Scholar 

  • Wahr, J. M., & Bergen, Z. (1986). The effects of mantle anelasticity on nutations, Earth tides, and tidal variations in rotation rate. Geophysical Journal International, 87, 633–688.

    Article  Google Scholar 

  • Wang, C. (1972). A simple earth model. Journal of Geophysical Research, 77, 4318–4329.

    Article  Google Scholar 

  • Wang, H., Xiang, L., Lulu, J., Jiang, L., Wang, Z., Hu, B., et al. (2012). Load Love Numbers and Green’s functions for elastic Earth models PREM, Iasp91, Ak135, and modified models with refined crustal structure from Crust 2.0. Computers & Geosciences, 49, 190–199.

    Article  Google Scholar 

  • Zahel, W. (1991). Modeling ocean tides with and without assimilating data. Journal of Geophysical Research: Solid Earth, 96(B12), 20379–20391.

    Article  Google Scholar 

  • Zahel, W. (1995). Assimilating ocean tide determined data into global tidal models. Journal of Marine Systems, 6, 3–13.

    Article  Google Scholar 

  • Zahel, W., Gavino, J. H., & Seiler, U. (2000). Angular momentum and energy budget of a global ocean tide model with data assimilation [in Spanish]. GEOS, 20(4), 400–413.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the FWF Austrian Science Fund, Project 24813. We also thank the IVS for providing the VLBI data. Thanks also go to Wolfgang Bosch for his input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Karbon.

Appendix

Appendix

In Table 7 we summarize the differences between the IERS model and the other models for the major tides. The columns headed by As and Ac show the corrections to the amplitudes of the sine and cosine terms for the relevant 71 tides in pole coordinates (xp and yp) and UT1. For the sake of concision, the values given in the table are obtained as the median and range of the correction differences between the conventional IERS model and the other models, based on FES2012, HAMTIDE12, and VEOT. Table also displays the range of amplitude corrections (i.e., the maximum difference between the maximum and minimum values). The comparison of both parameters is useful to get more insight into the magnitude.

Table 7 Median and range of the amplitude differences (i.e. the maximum difference between the maximum and minimum values) to the coefficients of sin(argument) and cos(argument) of semidiurnal variations caused by ocean tides in pole coordinates (xp and yp) and UT1 between the conventional IERS model and the other models, based on FES2012, HAMTIDE12, and VEOT

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karbon, M., Balidakis, K., Belda, S. et al. Long-Term Evaluation of Ocean Tidal Variation Models of Polar Motion and UT1. Pure Appl. Geophys. 175, 1611–1629 (2018). https://doi.org/10.1007/s00024-018-1866-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1866-1

Keywords

Navigation