Advertisement

Molecular Diagnosis & Therapy

, Volume 17, Issue 1, pp 31–47 | Cite as

Tumor Protein p53 (TP53) Testing and Li-Fraumeni Syndrome

Current Status of Clinical Applications and Future Directions
  • April D. SorrellEmail author
  • Carin R. Espenschied
  • Julie O. Culver
  • Jeffrey N. WeitzelEmail author
Review Article

Abstract

Prevalent as an acquired abnormality in cancer, the role of tumor protein p53 (TP53) as a germline mutation continues to evolve. The clinical impact of a germline TP53 mutation is often dramatic and affects the full life course, with a propensity to develop rare tumors in childhood and multiple common cancers of unexpectedly early onset in adulthood. In this article, we review the clinical relevance of germline mutations in the TP53 tumor suppressor gene to current healthcare practice, including the optimal ways to identify patients with Li-Fraumeni syndrome (LFS), to recognize the core cancers associated with LFS, and to develop strategies for early detection of LFS-associated tumors. Several TP53-targeted approaches to improve outcomes in LFS patients are also reviewed. A case report is used to highlight special TP53 testing dilemmas and unique challenges associated with genetic testing decisions in the current age of rapidly advancing genomic technologies.

Keywords

Hematopoietic Stem Cell Transplantation National Comprehensive Cancer Network Mammographic Density National Comprehensive Cancer Network TP53 Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The project described in this article was supported in part by grant numbers RC4CA153828 and R25CA085771 (principal investigator: J. Weitzel) from the National Cancer Institute. The content of the article is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. The authors wish to acknowledge Tracy Sulkin for assistance with manuscript preparation.

Conflicts of Interest

The authors state that they have no financial relationship with the funders of this work, and no other conflicts of interest that are directly relevant to the content of this article.

References

  1. 1.
    Gonzalez KD, Noltner KA, Buzin CH, et al. Beyond Li-Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27(8):1250–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Varley JM, Evans DG, Birch JM. Li-Fraumeni syndrome—a molecular and clinical review. Br J Cancer. 1997;76(1):1–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Lustbader ED, Williams WR, Bondy ML, et al. Segregation analysis of cancer in families of childhood soft-tissue-sarcoma patients. Am J Hum Genet. 1992;51(2):344–56.PubMedGoogle Scholar
  4. 4.
    Upton B, Chu Q, Li BD. Li-Fraumeni syndrome: the genetics and treatment considerations for the sarcoma and associated neoplasms. Surg Oncol Clin N Am. 2009;18(1):145–56, ix.Google Scholar
  5. 5.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.PubMedCrossRefGoogle Scholar
  6. 6.
    Hisada M, Garber JE, Fung CY, et al. Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst. 1998;90(8):606–11.PubMedCrossRefGoogle Scholar
  7. 7.
    Curiel-Lewandrowski C, Speetzen LS, Cranmer L, et al. Multiple primary cutaneous melanomas in Li-Fraumeni syndrome. Arch Dermatol. 2011;147(2):248–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Izawa N, Matsumoto S, Manabe J, et al. A Japanese patient with Li-Fraumeni syndrome who had nine primary malignancies associated with a germline mutation of the p53 tumor-suppressor gene. Int J Clin Oncol/Jpn Soc Clin Oncol. 2008;13(1):78–82.CrossRefGoogle Scholar
  9. 9.
    Strong LC, Stine M, Norsted TL. Cancer in survivors of childhood soft tissue sarcoma and their relatives. J Natl Cancer Inst. 1987;79(6):1213–20.PubMedGoogle Scholar
  10. 10.
    Hwang SJ, Lozano G, Amos CI, et al. Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet. 2003;72(4):975–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Talwalkar SS, Yin CC, Naeem RC, et al. Myelodysplastic syndromes arising in patients with germline TP53 mutation and Li-Fraumeni syndrome. Arch Pathol Lab Med. 2010;134(7):1010–5.PubMedGoogle Scholar
  12. 12.
    Henry E, Villalobos V, Million L, et al. Chest wall leiomyosarcoma after breast-conservative therapy for early-stage breast cancer in a young woman with Li-Fraumeni syndrome. J Natl Compr Canc Netw. 2012;10(8):939–42.PubMedGoogle Scholar
  13. 13.
    Kress M, May E, Cassingena R, et al. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol. 1979;31(2):472–83.PubMedGoogle Scholar
  14. 14.
    Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278(5701):261–3.PubMedCrossRefGoogle Scholar
  15. 15.
    Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17(1):43–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Soussi T. The history of p53. A perfect example of the drawbacks of scientific paradigms. EMBO Reports. 2010;11(11):822–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Diller L, Kassel J, Nelson CE, et al. p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol. 1990;10(11):5772–81.PubMedGoogle Scholar
  18. 18.
    Baker SJ, Markowitz S, Fearon ER, et al. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990;249(4971):912–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature. 1991;351:453–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Tabori U, Baskin B, Shago M, et al. Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. J Clin Oncol. 2010;28(8):1345–50.PubMedCrossRefGoogle Scholar
  23. 23.
    Olivier M, Langerod A, Carrieri P, et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res. 2006;12(4):1157–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Fernandez-Cuesta L, Oakman C, Falagan-Lotsch P, et al. Prognostic and predictive value of TP53 mutations in node-positive breast cancer patients treated with anthracycline- or anthracycline/taxane-based adjuvant therapy: results from the BIG 02-98 phase III trial. Breast Cancer Res. 2012;14(3):R70.PubMedCrossRefGoogle Scholar
  25. 25.
    Linzer DI, Maltzman W, Levine AJ. The SV40 A gene product is required for the production of a 54,000 MW cellular tumor antigen. Virology. 1979;98(2):308–18.PubMedCrossRefGoogle Scholar
  26. 26.
    DeLeo AB, Jay G, Appella E, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA. 1979;76(5):2420–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Crawford L. The 53,000-dalton cellular protein and its role in transformation. Int Rev Exp Pathol. 1983;25:1–50.PubMedGoogle Scholar
  28. 28.
    Crawford LV, Pim DC, Gurney EG, et al. Detection of a common feature in several human tumor cell lines—a 53,000-dalton protein. Proc Natl Acad Sci USA. 1981;78(1):41–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Crawford LV, Pim DC, Lamb P. The cellular protein p53 in human tumours. Mol Biol Med. 1984;2(4):261–72.PubMedGoogle Scholar
  30. 30.
    Koeffler HP, Miller C, Nicolson MA, et al. Increased expression of p53 protein in human leukemia cells. Proc Natl Acad Sci USA. 1986;83(11):4035–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Lubbert M, Miller CW, Crawford L, et al. p53 in chronic myelogenous leukemia: study of mechanisms of differential expression. J Exp Med. 1988;167(3):873–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Masuda H, Miller C, Koeffler HP, et al. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA. 1987;84(21):7716–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Smith LJ, McCulloch EA, Benchimol S. Expression of the p53 oncogene in acute myeloblastic leukemia. J Exp Med. 1986;164(3):751–61.PubMedCrossRefGoogle Scholar
  34. 34.
    Lavigueur A, Maltby V, Mock D, et al. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol. 1989;9(9):3982–91.PubMedGoogle Scholar
  35. 35.
    Denissenko MF, Pao A, Tang M, et al. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996;274(5286):430–2.PubMedCrossRefGoogle Scholar
  36. 36.
    Hainaut P, Pfeifer GP. Patterns of p53 G→T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis. 2001;22(3):367–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Besaratinia A, Pfeifer GP. Applications of the human p53 knock-in (Hupki) mouse model for human carcinogen testing. FASEB J. 2010;24(8):2612–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Harvey M, McArthur MJ, Montgomery CA Jr, et al. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J. 1993;7(10):938–43.PubMedGoogle Scholar
  39. 39.
    Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356(6366):215–21.PubMedCrossRefGoogle Scholar
  40. 40.
    Jacks T, Remington L, Williams BO, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4(1):1–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Vogelstein B. Cancer. A deadly inheritance. Nature. 1990;348(6303):681–2.PubMedCrossRefGoogle Scholar
  42. 42.
    Li FP, Fraumeni JF Jr. Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst. 1969;43(6):1365–73.PubMedGoogle Scholar
  43. 43.
    Li FP, Fraumeni JF Jr, Mulvihill JJ, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.PubMedGoogle Scholar
  44. 44.
    Lynch HT, Mulcahy GM, Harris RE, et al. Genetic and pathologic findings in a kindred with hereditary sarcoma, breast cancer, brain tumors, leukemia, lung, laryngeal, and adrenal cortical carcinoma. Cancer. 1978;41(5):2055–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Srivastava S, Zou ZQ, Pirollo K, et al. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348(6303):747–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Borresen AL, Andersen TI, Garber J, et al. Screening for germ line TP53 mutations in breast cancer patients. Cancer Res. 1992;52:3234–6.PubMedGoogle Scholar
  48. 48.
    Birch JM. Germline mutations in the p53 tumour suppressor gene: scientific, clinical and ethical challenges. Br J Cancer. 1992;66(3):424–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Law JC, Strong LC, Chidambaram A, et al. A germ line mutation in exon 5 of the p53 gene in an extended cancer family. Cancer Res. 1991;51(23 Pt 1):6385–7.PubMedGoogle Scholar
  50. 50.
    Strong LC, Williams WR, Tainsky MA. The Li-Fraumeni syndrome: from clinical epidemiology to molecular genetics. Am J Epidemiol. 1992;135(2):190–9.PubMedGoogle Scholar
  51. 51.
    Olivier M, Goldgar DE, Sodha N, et al. Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res. 2003;63(20):6643–50.PubMedGoogle Scholar
  52. 52.
    Garritano S, Gemignani F, Palmero EI, et al. Detailed haplotype analysis at the TP53 locus in p.R337H mutation carriers in the population of Southern Brazil: evidence for a founder effect. Hum Mutat. 2010;31(2):143–50.PubMedCrossRefGoogle Scholar
  53. 53.
    Chompret A, Brugieres L, Ronsin M, et al. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer. 2000;82(12):1932–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Evans DG, Birch JM, Thorneycroft M, et al. Low rate of TP53 germline mutations in breast cancer/sarcoma families not fulfilling classical criteria for Li-Fraumeni syndrome. J Med Genet. 2002;39(12):941–4.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee DS, Yoon SY, Looi LM, et al. Comparable frequency of BRCA1, BRCA2 and TP53 germline mutations in a multi-ethnic Asian cohort suggests TP53 screening should be offered together with BRCA1/2 screening to early-onset breast cancer patients. Breast Cancer Res. 2012;14(2):R61.CrossRefGoogle Scholar
  56. 56.
    Masciari S, Dillon DA, Rath M, et al. Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni Syndrome Consortium effort. Breast Cancer Res Treat. 2012;133(3):1125–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Melhem-Bertrandt A, Bojadzieva J, Ready KJ, et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer. 2012;118(4):908–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Wilson JR, Bateman AC, Hanson H, et al. A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet. 2010;47(11):771–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Ognjanovic S, Oliver M, Bergemann TL, et al. Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer. 2012;118(5):1387–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Palmero EI, Achatz MIW, Ashton-Prolla P, et al. Tumor protein 53 mutations and inherited cancer: beyond Li-Fraumeni syndrome. Curr Opin Oncol. 2010;22(1):64–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Ruijs MW, Verhoef S, Rookus MA, et al. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet. 2010;47(6):421–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Farrell CJ, Plotkin SR. Genetic causes of brain tumors: neurofibromatosis, tuberous sclerosis, von Hippel-Lindau, and other syndromes. Neurol Clin. 2007;25(4):925–46, viii.Google Scholar
  63. 63.
    Krutilkova V, Trkova M, Fleitz J, et al. Identification of five new families strengthens the link between childhood choroid plexus carcinoma and germline TP53 mutations. Eur J Cancer. 2005;41(11):1597–603.PubMedCrossRefGoogle Scholar
  64. 64.
    Garber JE, Burke EM, Lavally BL, et al. Choroid plexus tumors in the breast cancer-sarcoma syndrome. Cancer. 1990;66(12):2658–60.PubMedCrossRefGoogle Scholar
  65. 65.
    Gozali AE, Britt B, Shane L, et al. Choroid plexus tumors; management, outcome, and association with the Li-Fraumeni syndrome: the Children’s Hospital Los Angeles (CHLA) experience, 1991–2010. Pediatr Blood Cancer. 2012;58(6):905–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Herrmann LJ, Heinze B, Fassnacht M, et al. TP53 germline mutations in adult patients with adrenocortical carcinoma. J Clin Endocrinol Metab. 2012;97(3):E476–85.PubMedCrossRefGoogle Scholar
  67. 67.
    Palmero EI, Schuler-Faccini L, Caleffi M, et al. Detection of R337H, a germline TP53 mutation predisposing to multiple cancers, in asymptomatic women participating in a breast cancer screening program in Southern Brazil. Cancer Lett. 2008;261(1):21–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Achatz MIW, Hainaut P, Ashton-Prolla P. Highly prevalent TP53 mutation predisposing to many cancers in the Brazilian population: a case for newborn screening? Lancet Oncol. 2009;10(9):920–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Pinto EM, Billerbeck AE, Villares MC, et al. Founder effect for the highly prevalent R337H mutation of tumor suppressor p53 in Brazilian patients with adrenocortical tumors. Arq Bras Endocrinol Metabol. 2004;48(5):647–50.PubMedCrossRefGoogle Scholar
  70. 70.
    Ribeiro RC, Sandrini F, Figueiredo B, et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA. 2001;98(16):9330–5.PubMedCrossRefGoogle Scholar
  71. 71.
    Latronico AC, Pinto EM, Domenice S, et al. An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors. J Clin Endocrinol Metab. 2001;86(10):4970–3.PubMedCrossRefGoogle Scholar
  72. 72.
    Figueiredo BC, Sandrini R, Zambetti GP, et al. Penetrance of adrenocortical tumours associated with the germline TP53 R337H mutation. J Med Genet. 2006;43(1):91–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Achatz MI, Olivier M, Le Calvez F, et al. The TP53 mutation, R337H, is associated with Li-Fraumeni and Li-Fraumeni-like syndromes in Brazilian families. Cancer Lett. 2007;245(1–2):96–102.PubMedCrossRefGoogle Scholar
  74. 74.
    Assumpcao JG, Seidinger AL, Mastellaro MJ, et al. Association of the germline TP53 R337H mutation with breast cancer in southern Brazil. BMC Cancer. 2008;8:357.PubMedCrossRefGoogle Scholar
  75. 75.
    Wong P, Verselis SJ, Garber JE, et al. Prevalence of early onset colorectal cancer in 397 patients with classic Li-Fraumeni syndrome. Gastroenterology. 2006;130(1):73–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Masciari S, Dewanwala A, Stoffel EM, et al. Gastric cancer in individuals with Li-Fraumeni syndrome. Genet Med. 2011;13(7):651–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108(44):18032–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Sui X, Jin L, Huang X, et al. p53 signaling and autophagy in cancer: a revolutionary strategy could be developed for cancer treatment. Autophagy. 2011;7(6):565–71.PubMedCrossRefGoogle Scholar
  79. 79.
    Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000;60(24):6788–93.PubMedGoogle Scholar
  80. 80.
    Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9(10):701–13.PubMedGoogle Scholar
  81. 81.
    Malkin D. Li-Fraumeni syndrome. Genes Cancer. 2011;2(4):475–84.PubMedCrossRefGoogle Scholar
  82. 82.
    Varley J, McGown G, Thorncroft M, et al. Are there low-penetrance TP53 alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet. 1999;65:995–1006.PubMedCrossRefGoogle Scholar
  83. 83.
    Birch JM, Hartley AL, Tricker KJ, et al. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res. 1994;54(5):1298–304.PubMedGoogle Scholar
  84. 84.
    Bougeard G, Sesboue R, Baert-Desurmont S, et al. Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families. J Med Genet. 2008;45(8):535–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Andreotti V, Ciribilli Y, Monti P, et al. p53 transactivation and the impact of mutations, cofactors and small molecules using a simplified yeast-based screening system. PloS One. 2011;6(6):e20643.PubMedCrossRefGoogle Scholar
  86. 86.
    Horgan AM, Yang B, Azad AK, et al. Pharmacogenetic and germline prognostic markers of lung cancer. J Thorac Oncol. 2011;6(2):296–304.PubMedCrossRefGoogle Scholar
  87. 87.
    University of Washington. GeneTests. http://www.genetests.org. Accessed 19 July 2012.
  88. 88.
    National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: genetic/familial high-risk assessment: breast and ovarian. Version 1, 2012. http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Accessed 1 June 2012.
  89. 89.
    Eeles RA. Germline mutations in the TP53 gene. Cancer Surv. 1995;25:101–24.PubMedGoogle Scholar
  90. 90.
    Chompret A, Abel A, Stoppa-Lyonnet D, et al. Sensitivity and predictive value of criteria for p53 germline mutation screening. J Med Genet. 2001;38(1):43–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Tinat J, Bougeard G, Baert-Desurmont S, et al. 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol. 2009;27(26):e108–9. author reply e110.PubMedCrossRefGoogle Scholar
  92. 92.
    McCuaig JM, Armel SR, Novokmet A, et al. Routine TP53 testing for breast cancer under age 30: ready for prime time? Fam Cancer. 2012;11(4):607–13.PubMedCrossRefGoogle Scholar
  93. 93.
    Gonzalez KD, Buzin CH, Noltner KA, et al. High frequency of de novo mutations in Li-Fraumeni syndrome. J Med Genet. 2009;46(10):689–93.PubMedCrossRefGoogle Scholar
  94. 94.
    Evans D, Lunt P, Clancy T, et al. Childhood predictive genetic testing for Li-Fraumeni syndrome. Fam Cancer. 2010;9(1):65–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Villani A, Tabori U, Schiffman J, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol. 2011;12(6):559–67.PubMedCrossRefGoogle Scholar
  96. 96.
    Rechitsky S, Verlinsky O, Chistokhina A, et al. Preimplantation genetic diagnosis for cancer predisposition. Reprod Biomed Online. 2002;5(2):148–55.PubMedCrossRefGoogle Scholar
  97. 97.
    Offit K, Sagi M, Hurley K. Preimplantation genetic diagnosis for cancer syndromes: a new challenge for preventive medicine. JAMA. 2006;296(22):2727–30.PubMedCrossRefGoogle Scholar
  98. 98.
    Verlinsky Y, Rechitsky S, Verlinsky O, et al. Preimplantation diagnosis for p53 tumour suppressor gene mutations. Reprod Biomed Online. 2001;2(2):102–5.PubMedCrossRefGoogle Scholar
  99. 99.
    Avigad S, Peleg D, Barel D, et al. Prenatal diagnosis in Li-Fraumeni syndrome. J Pediatr Hematol Oncol. 2004;26(9):541–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Peterson SK, Pentz RD, Marani SK, et al. Psychological functioning in persons considering genetic counseling and testing for Li-Fraumeni syndrome. Psychooncology. 2008;17(8):783–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Lammens CR, Aaronson NK, Wagner A, et al. Genetic testing in Li-Fraumeni syndrome: uptake and psychosocial consequences. J Clin Oncol. 2010;28(18):3008–14.PubMedCrossRefGoogle Scholar
  102. 102.
    Lammens CR, Bleiker EM, Verhoef S, et al. Distress in partners of individuals diagnosed with or at high risk of developing tumors due to rare hereditary cancer syndromes. Psychooncology. 2011;20(6):631–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Storm C, Agarwal R, Offit K. Ethical and legal implications of cancer genetic testing: do physicians have a duty to warn patients’ relatives about possible genetic risks? J Oncol Pract. 2008;4(5):229–30.PubMedCrossRefGoogle Scholar
  104. 104.
    Schwarzbraun T, Obenauf AC, Langmann A, et al. Predictive diagnosis of the cancer prone Li-Fraumeni syndrome by accident: new challenges through whole genome array testing. J Med Genet. 2009;46(5):341–4.PubMedCrossRefGoogle Scholar
  105. 105.
    Link DC, Schuettpelz LG, Shen D, et al. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA. 2011;305(15):1568–76.PubMedCrossRefGoogle Scholar
  106. 106.
    Engstrom PF, Bloom MG, Demetri GD, et al. NCCN molecular testing white paper: effectiveness, efficiency, and reimbursement. J Natl Compr Cancer Netw. 2011;9(Suppl 6):S1–16.Google Scholar
  107. 107.
    NCCN panel calls for higher standards, better ways of translating molecular genetics into clinical practice. J Natl Compr Canc Netw. 2011;9(4):xliii.Google Scholar
  108. 108.
    McClure JS. Informing patients: translating the NCCN guidelines. J Natl Compr Cancer Netw. 2011;9(Suppl 3):S4–5.Google Scholar
  109. 109.
    Netzer C, Klein C, Kohlhase J, et al. New challenges for informed consent through whole genome array testing. J Med Genet. 2009;46(7):495–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Lehman CD, Smith RA. The role of MRI in breast cancer screening. J Natl Compr Cancer Netw. 2009;7(10):1109–15.Google Scholar
  111. 111.
    Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89.PubMedCrossRefGoogle Scholar
  112. 112.
    Schneider K, Garber J. Li-Fraumeni syndrome. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews. Seattle: University of Washington; 1993.Google Scholar
  113. 113.
    Masciari S, Van den Abbeele AD, Diller LR, et al. F18-fluorodeoxyglucose-positron emission tomography/computed tomography screening in Li-Fraumeni syndrome. JAMA. 2008;299(11):1315–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Monsalve J, Kapur J, Malkin D, et al. Imaging of cancer predisposition syndromes in children. Radiographics. 2011;31(1):263–80.PubMedCrossRefGoogle Scholar
  115. 115.
    Shlien A, Tabori U, Marshall CR, et al. Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome. Proc Natl Acad Sci USA. 2008;105(32):11264–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Tabori U, Dome JS. Telomere biology of pediatric cancer. Cancer Invest. 2007;25(3):197–208.PubMedCrossRefGoogle Scholar
  117. 117.
    Tabori U, Nanda S, Druker H, et al. Younger age of cancer initiation is associated with shorter telomere length in Li-Fraumeni syndrome. Cancer Res. 2007;67(4):1415–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Ma L, Fishell E, Wright B, et al. Case-control study of factors associated with failure to detect breast cancer by mammography. J Natl Cancer Inst. 1992;84(10):781–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Kriege M, Brekelmans CT, Boetes C, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351(5):427–37.PubMedCrossRefGoogle Scholar
  120. 120.
    Boyd NF, Dite GS, Stone J, et al. Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002;347(12):886–94.PubMedCrossRefGoogle Scholar
  121. 121.
    Boyd NF, Jensen HM, Cooke G, et al. Relationship between mammographic and histological risk factors for breast cancer. J Natl Cancer Inst. 1992;84(15):1170–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Weitzel JN, Buys SS, Sherman WH, et al. Reduced mammographic density with use of a gonadotropin-releasing hormone agonist-based chemoprevention regimen in BRCA1 carriers. Clin Cancer Res. 2007;13(2 Pt 1):654–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Mai PL, Malkin D, Garber JE, et al. Li-Fraumeni syndrome: report of a clinical research workshop and creation of a research consortium. Cancer Genet. 2012;205(10):479–87.PubMedCrossRefGoogle Scholar
  124. 124.
    Berrak SG, Liu DD, Wrede B, et al. Which therapy works better in choroid plexus carcinomas? J Neurooncol. 2011;103(1):155–62.PubMedCrossRefGoogle Scholar
  125. 125.
    Tabori U, Shlien A, Baskin B, et al. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol. 2010;28(12):1995–2001.PubMedCrossRefGoogle Scholar
  126. 126.
    Barton VN, Donson AM, Kleinschmidt-DeMasters BK, et al. PARP1 expression in pediatric central nervous system tumors. Pediatr Blood Cancer. 2009;53(7):1227–30.PubMedCrossRefGoogle Scholar
  127. 127.
    Zenz T, Mertens D, Dohner H, et al. Molecular diagnostics in chronic lymphocytic leukemia—pathogenetic and clinical implications. Leuk Lymphoma. 2008;49(5):864–73.PubMedCrossRefGoogle Scholar
  128. 128.
    Veliz M, Pinilla-Ibarz J. Treatment of relapsed or refractory chronic lymphocytic leukemia. Cancer Control. 2012;19(1):37–53.PubMedGoogle Scholar
  129. 129.
    Keating MJ, O’Brien S, Kontoyiannis D, et al. Results of first salvage therapy for patients refractory to a fludarabine regimen in chronic lymphocytic leukemia. Leuk Lymphoma. 2002;43(9):1755–62.PubMedCrossRefGoogle Scholar
  130. 130.
    Tam CS, O’Brien S, Lerner S, et al. The natural history of fludarabine-refractory chronic lymphocytic leukemia patients who fail alemtuzumab or have bulky lymphadenopathy. Leuk Lymphoma. 2007;48(10):1931–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Dearden CE, Richards S, Else M, et al. A comparison of the efficacy and safety of oral and intravenous fludarabine in chronic lymphocytic leukemia in the LRF CLL4 trial. Cancer. 2010;117(11):2452–60.CrossRefGoogle Scholar
  132. 132.
    Pospisilova S, Gonzalez D, Malcikova J, et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia. 2012;26(7):1458–61.PubMedCrossRefGoogle Scholar
  133. 133.
    Hallden G, Portella G. Oncolytic virotherapy with modified adenoviruses and novel therapeutic targets. Expert Opin Ther Targets. 2012;16(10):945–58.PubMedCrossRefGoogle Scholar
  134. 134.
    Sakai R, Kagawa S, Yamasaki Y, et al. Preclinical evaluation of differentially targeting dual virotherapy for human solid cancer. Mol Cancer Ther. 2010;9(6):1884–93.PubMedCrossRefGoogle Scholar
  135. 135.
    Brower V. Cancer gene therapy steadily advances. J Natl Cancer Inst. 2008;100(18):1276–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Bishop MR, Iversen PL, Bayever E, et al. Phase I trial of an antisense oligonucleotide OL(1)p53 in hematologic malignancies. J Clin Oncol. 1996;14(4):1320–6.PubMedGoogle Scholar
  137. 137.
    Bishop MR, Jackson JD, Tarantolo SR, et al. Ex vivo treatment of bone marrow with phosphorothioate oligonucleotide OL(1)p53 for autologous transplantation in acute myelogenous leukemia and myelodysplastic syndrome. J Hematother. 1997;6(5):441–6.PubMedGoogle Scholar
  138. 138.
    Bang YJ. Advances in the management of HER2-positive advanced gastric and gastroesophageal junction cancer. J Clin Gastroenterol. 2012;46(8):637–48.PubMedCrossRefGoogle Scholar
  139. 139.
    Jankowitz RC, Brufsky AM. Adjuvant treatment of HER2-positive breast cancer: winning efforts continue to improve HER2-positive patient outcome long-term. Breast Cancer Res. 2012;14(2):308.PubMedCrossRefGoogle Scholar
  140. 140.
    Hayashi M, Okumura Y, Osako T, et al. Time to first tumor progression as a predictor of efficacy of continued treatment with trastuzumab beyond progression in human epidermal growth factor receptor 2-positive metastatic breast cancer. Int J Clin Oncol/Jpn Soc Clin Oncol. 2011;16(6):694–700.CrossRefGoogle Scholar
  141. 141.
    Sachdev JC, Jahanzeb M. Blockade of the HER family of receptors in the treatment of HER2-positive metastatic breast cancer. Clin Breast Cancer. 2012;12(1):19–29.PubMedCrossRefGoogle Scholar
  142. 142.
    Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445(7128):656–60.PubMedCrossRefGoogle Scholar
  143. 143.
    Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006;127(7):1323–34.PubMedCrossRefGoogle Scholar
  144. 144.
    Ventura A, Kirsch DG, McLaughlin ME, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–5.PubMedCrossRefGoogle Scholar
  145. 145.
    Suzuki K, Matsubara H. Recent advances in p53 research and cancer treatment. J Biomed Biotechnol. 2011;2011:978312.PubMedGoogle Scholar
  146. 146.
    Bykov VJ, Issaeva N, Selivanova G, et al. Mutant p53-dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: a statistical analysis of information in the National Cancer Institute database. Carcinogenesis. 2002;23(12):2011–8.PubMedCrossRefGoogle Scholar
  147. 147.
    Rippin TM, Bykov VJ, Freund SM, et al. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene. 2002;21(14):2119–29.PubMedCrossRefGoogle Scholar
  148. 148.
    Lehmann BD, Pietenpol JA. Targeting mutant p53 in human tumors. J Clin Oncol. 2012;30(29):3648–50.PubMedCrossRefGoogle Scholar
  149. 149.
    Lehmann S, Bykov VJ, Ali D, et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 2012;30(29):3633–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Clayman GL, el-Naggar AK, Lippman SM, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol. 1998;16(6):2221–32.PubMedGoogle Scholar
  151. 151.
    Bertheau P, Espie M, Turpin E, et al. TP53 status and response to chemotherapy in breast cancer. Pathobiology. 2008;75(2):132–9.PubMedCrossRefGoogle Scholar
  152. 152.
    Chaiteerakij R, Yang JD, Harmsen WS, et al. Risk factors for intrahepatic cholangiocarcinoma: association between metformin use and reduced cancer risk. Hepatology. Epub 2012 Oct 11.Google Scholar
  153. 153.
    Skinner HD, McCurdy MR, Echeverria AE, et al. Metformin use and improved response to therapy in esophageal adenocarcinoma. Acta Oncol. Epub 2012 Sep 5.Google Scholar
  154. 154.
    Niraula S, Dowling RJ, Ennis M, et al. Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res Treat. 2012;135(3):821–30.PubMedCrossRefGoogle Scholar
  155. 155.
    Lee JH, Jeon SM, Hong SP, et al. Metformin use is associated with a decreased incidence of colorectal adenomas in diabetic patients with previous colorectal cancer. Digest Liver Dis. 2012;44(12):1042–7.CrossRefGoogle Scholar
  156. 156.
    Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007;67(14):6745–52.PubMedCrossRefGoogle Scholar
  157. 157.
    Hamada N, Imaoka T, Masunaga S, et al. Recent advances in the biology of heavy-ion cancer therapy. J Radiat Res. 2010;51(4):365–83.PubMedCrossRefGoogle Scholar
  158. 158.
    Collins LC, Marotti JD, Gelber S, et al. Pathologic features and molecular phenotype by patient age in a large cohort of young women with breast cancer. Breast Cancer Res Treat. 2012;131(3):1061–6.PubMedCrossRefGoogle Scholar
  159. 159.
    Gonzalez-Angulo AM, Broglio K, Kau SW, et al. Women age < or = 35 years with primary breast carcinoma: disease features at presentation. Cancer. 2005;103(12):2466–72.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Division of Clinical Cancer Genetics, Department of PediatricsCity of HopeDuarteUSA
  2. 2.Division of Clinical Cancer Genetics, Department of Population SciencesCity of HopeDuarteUSA

Personalised recommendations