Skip to main content
Log in

Tumor Protein p53 (TP53) Testing and Li-Fraumeni Syndrome

Current Status of Clinical Applications and Future Directions

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Prevalent as an acquired abnormality in cancer, the role of tumor protein p53 (TP53) as a germline mutation continues to evolve. The clinical impact of a germline TP53 mutation is often dramatic and affects the full life course, with a propensity to develop rare tumors in childhood and multiple common cancers of unexpectedly early onset in adulthood. In this article, we review the clinical relevance of germline mutations in the TP53 tumor suppressor gene to current healthcare practice, including the optimal ways to identify patients with Li-Fraumeni syndrome (LFS), to recognize the core cancers associated with LFS, and to develop strategies for early detection of LFS-associated tumors. Several TP53-targeted approaches to improve outcomes in LFS patients are also reviewed. A case report is used to highlight special TP53 testing dilemmas and unique challenges associated with genetic testing decisions in the current age of rapidly advancing genomic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gonzalez KD, Noltner KA, Buzin CH, et al. Beyond Li-Fraumeni syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol. 2009;27(8):1250–6.

    Article  PubMed  CAS  Google Scholar 

  2. Varley JM, Evans DG, Birch JM. Li-Fraumeni syndrome—a molecular and clinical review. Br J Cancer. 1997;76(1):1–14.

    Article  PubMed  CAS  Google Scholar 

  3. Lustbader ED, Williams WR, Bondy ML, et al. Segregation analysis of cancer in families of childhood soft-tissue-sarcoma patients. Am J Hum Genet. 1992;51(2):344–56.

    PubMed  CAS  Google Scholar 

  4. Upton B, Chu Q, Li BD. Li-Fraumeni syndrome: the genetics and treatment considerations for the sarcoma and associated neoplasms. Surg Oncol Clin N Am. 2009;18(1):145–56, ix.

    Google Scholar 

  5. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.

    Article  PubMed  Google Scholar 

  6. Hisada M, Garber JE, Fung CY, et al. Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst. 1998;90(8):606–11.

    Article  PubMed  CAS  Google Scholar 

  7. Curiel-Lewandrowski C, Speetzen LS, Cranmer L, et al. Multiple primary cutaneous melanomas in Li-Fraumeni syndrome. Arch Dermatol. 2011;147(2):248–50.

    Article  PubMed  Google Scholar 

  8. Izawa N, Matsumoto S, Manabe J, et al. A Japanese patient with Li-Fraumeni syndrome who had nine primary malignancies associated with a germline mutation of the p53 tumor-suppressor gene. Int J Clin Oncol/Jpn Soc Clin Oncol. 2008;13(1):78–82.

    Article  Google Scholar 

  9. Strong LC, Stine M, Norsted TL. Cancer in survivors of childhood soft tissue sarcoma and their relatives. J Natl Cancer Inst. 1987;79(6):1213–20.

    PubMed  CAS  Google Scholar 

  10. Hwang SJ, Lozano G, Amos CI, et al. Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet. 2003;72(4):975–83.

    Article  PubMed  CAS  Google Scholar 

  11. Talwalkar SS, Yin CC, Naeem RC, et al. Myelodysplastic syndromes arising in patients with germline TP53 mutation and Li-Fraumeni syndrome. Arch Pathol Lab Med. 2010;134(7):1010–5.

    PubMed  Google Scholar 

  12. Henry E, Villalobos V, Million L, et al. Chest wall leiomyosarcoma after breast-conservative therapy for early-stage breast cancer in a young woman with Li-Fraumeni syndrome. J Natl Compr Canc Netw. 2012;10(8):939–42.

    PubMed  Google Scholar 

  13. Kress M, May E, Cassingena R, et al. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol. 1979;31(2):472–83.

    PubMed  CAS  Google Scholar 

  14. Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature. 1979;278(5701):261–3.

    Article  PubMed  CAS  Google Scholar 

  15. Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17(1):43–52.

    Article  PubMed  CAS  Google Scholar 

  16. Soussi T. The history of p53. A perfect example of the drawbacks of scientific paradigms. EMBO Reports. 2010;11(11):822–6.

    Article  PubMed  CAS  Google Scholar 

  17. Diller L, Kassel J, Nelson CE, et al. p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol. 1990;10(11):5772–81.

    PubMed  CAS  Google Scholar 

  18. Baker SJ, Markowitz S, Fearon ER, et al. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990;249(4971):912–5.

    Article  PubMed  CAS  Google Scholar 

  19. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene. Nature. 1991;351:453–6.

    Article  PubMed  CAS  Google Scholar 

  20. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15–6.

    Article  PubMed  CAS  Google Scholar 

  21. Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622–9.

    Article  PubMed  CAS  Google Scholar 

  22. Tabori U, Baskin B, Shago M, et al. Universal poor survival in children with medulloblastoma harboring somatic TP53 mutations. J Clin Oncol. 2010;28(8):1345–50.

    Article  PubMed  CAS  Google Scholar 

  23. Olivier M, Langerod A, Carrieri P, et al. The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res. 2006;12(4):1157–67.

    Article  PubMed  CAS  Google Scholar 

  24. Fernandez-Cuesta L, Oakman C, Falagan-Lotsch P, et al. Prognostic and predictive value of TP53 mutations in node-positive breast cancer patients treated with anthracycline- or anthracycline/taxane-based adjuvant therapy: results from the BIG 02-98 phase III trial. Breast Cancer Res. 2012;14(3):R70.

    Article  PubMed  CAS  Google Scholar 

  25. Linzer DI, Maltzman W, Levine AJ. The SV40 A gene product is required for the production of a 54,000 MW cellular tumor antigen. Virology. 1979;98(2):308–18.

    Article  PubMed  CAS  Google Scholar 

  26. DeLeo AB, Jay G, Appella E, et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA. 1979;76(5):2420–4.

    Article  PubMed  CAS  Google Scholar 

  27. Crawford L. The 53,000-dalton cellular protein and its role in transformation. Int Rev Exp Pathol. 1983;25:1–50.

    PubMed  CAS  Google Scholar 

  28. Crawford LV, Pim DC, Gurney EG, et al. Detection of a common feature in several human tumor cell lines—a 53,000-dalton protein. Proc Natl Acad Sci USA. 1981;78(1):41–5.

    Article  PubMed  CAS  Google Scholar 

  29. Crawford LV, Pim DC, Lamb P. The cellular protein p53 in human tumours. Mol Biol Med. 1984;2(4):261–72.

    PubMed  CAS  Google Scholar 

  30. Koeffler HP, Miller C, Nicolson MA, et al. Increased expression of p53 protein in human leukemia cells. Proc Natl Acad Sci USA. 1986;83(11):4035–9.

    Article  PubMed  CAS  Google Scholar 

  31. Lubbert M, Miller CW, Crawford L, et al. p53 in chronic myelogenous leukemia: study of mechanisms of differential expression. J Exp Med. 1988;167(3):873–86.

    Article  PubMed  CAS  Google Scholar 

  32. Masuda H, Miller C, Koeffler HP, et al. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA. 1987;84(21):7716–9.

    Article  PubMed  CAS  Google Scholar 

  33. Smith LJ, McCulloch EA, Benchimol S. Expression of the p53 oncogene in acute myeloblastic leukemia. J Exp Med. 1986;164(3):751–61.

    Article  PubMed  CAS  Google Scholar 

  34. Lavigueur A, Maltby V, Mock D, et al. High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol. 1989;9(9):3982–91.

    PubMed  CAS  Google Scholar 

  35. Denissenko MF, Pao A, Tang M, et al. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996;274(5286):430–2.

    Article  PubMed  CAS  Google Scholar 

  36. Hainaut P, Pfeifer GP. Patterns of p53 G→T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis. 2001;22(3):367–74.

    Article  PubMed  CAS  Google Scholar 

  37. Besaratinia A, Pfeifer GP. Applications of the human p53 knock-in (Hupki) mouse model for human carcinogen testing. FASEB J. 2010;24(8):2612–9.

    Article  PubMed  CAS  Google Scholar 

  38. Harvey M, McArthur MJ, Montgomery CA Jr, et al. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J. 1993;7(10):938–43.

    PubMed  CAS  Google Scholar 

  39. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356(6366):215–21.

    Article  PubMed  CAS  Google Scholar 

  40. Jacks T, Remington L, Williams BO, et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol. 1994;4(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  41. Vogelstein B. Cancer. A deadly inheritance. Nature. 1990;348(6303):681–2.

    Article  PubMed  CAS  Google Scholar 

  42. Li FP, Fraumeni JF Jr. Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J Natl Cancer Inst. 1969;43(6):1365–73.

    PubMed  CAS  Google Scholar 

  43. Li FP, Fraumeni JF Jr, Mulvihill JJ, et al. A cancer family syndrome in twenty-four kindreds. Cancer Res. 1988;48(18):5358–62.

    PubMed  CAS  Google Scholar 

  44. Lynch HT, Mulcahy GM, Harris RE, et al. Genetic and pathologic findings in a kindred with hereditary sarcoma, breast cancer, brain tumors, leukemia, lung, laryngeal, and adrenal cortical carcinoma. Cancer. 1978;41(5):2055–64.

    Article  PubMed  CAS  Google Scholar 

  45. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–7.

    Article  PubMed  CAS  Google Scholar 

  46. Srivastava S, Zou ZQ, Pirollo K, et al. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348(6303):747–9.

    Article  PubMed  CAS  Google Scholar 

  47. Borresen AL, Andersen TI, Garber J, et al. Screening for germ line TP53 mutations in breast cancer patients. Cancer Res. 1992;52:3234–6.

    PubMed  CAS  Google Scholar 

  48. Birch JM. Germline mutations in the p53 tumour suppressor gene: scientific, clinical and ethical challenges. Br J Cancer. 1992;66(3):424–6.

    Article  PubMed  CAS  Google Scholar 

  49. Law JC, Strong LC, Chidambaram A, et al. A germ line mutation in exon 5 of the p53 gene in an extended cancer family. Cancer Res. 1991;51(23 Pt 1):6385–7.

    PubMed  CAS  Google Scholar 

  50. Strong LC, Williams WR, Tainsky MA. The Li-Fraumeni syndrome: from clinical epidemiology to molecular genetics. Am J Epidemiol. 1992;135(2):190–9.

    PubMed  CAS  Google Scholar 

  51. Olivier M, Goldgar DE, Sodha N, et al. Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res. 2003;63(20):6643–50.

    PubMed  CAS  Google Scholar 

  52. Garritano S, Gemignani F, Palmero EI, et al. Detailed haplotype analysis at the TP53 locus in p.R337H mutation carriers in the population of Southern Brazil: evidence for a founder effect. Hum Mutat. 2010;31(2):143–50.

    Article  PubMed  CAS  Google Scholar 

  53. Chompret A, Brugieres L, Ronsin M, et al. P53 germline mutations in childhood cancers and cancer risk for carrier individuals. Br J Cancer. 2000;82(12):1932–7.

    Article  PubMed  CAS  Google Scholar 

  54. Evans DG, Birch JM, Thorneycroft M, et al. Low rate of TP53 germline mutations in breast cancer/sarcoma families not fulfilling classical criteria for Li-Fraumeni syndrome. J Med Genet. 2002;39(12):941–4.

    Article  PubMed  CAS  Google Scholar 

  55. Lee DS, Yoon SY, Looi LM, et al. Comparable frequency of BRCA1, BRCA2 and TP53 germline mutations in a multi-ethnic Asian cohort suggests TP53 screening should be offered together with BRCA1/2 screening to early-onset breast cancer patients. Breast Cancer Res. 2012;14(2):R61.

    Article  Google Scholar 

  56. Masciari S, Dillon DA, Rath M, et al. Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni Syndrome Consortium effort. Breast Cancer Res Treat. 2012;133(3):1125–30.

    Article  PubMed  CAS  Google Scholar 

  57. Melhem-Bertrandt A, Bojadzieva J, Ready KJ, et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer. 2012;118(4):908–13.

    Article  PubMed  CAS  Google Scholar 

  58. Wilson JR, Bateman AC, Hanson H, et al. A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet. 2010;47(11):771–4.

    Article  PubMed  CAS  Google Scholar 

  59. Ognjanovic S, Oliver M, Bergemann TL, et al. Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer. 2012;118(5):1387–96.

    Article  PubMed  CAS  Google Scholar 

  60. Palmero EI, Achatz MIW, Ashton-Prolla P, et al. Tumor protein 53 mutations and inherited cancer: beyond Li-Fraumeni syndrome. Curr Opin Oncol. 2010;22(1):64–9.

    Article  PubMed  CAS  Google Scholar 

  61. Ruijs MW, Verhoef S, Rookus MA, et al. TP53 germline mutation testing in 180 families suspected of Li-Fraumeni syndrome: mutation detection rate and relative frequency of cancers in different familial phenotypes. J Med Genet. 2010;47(6):421–8.

    Article  PubMed  CAS  Google Scholar 

  62. Farrell CJ, Plotkin SR. Genetic causes of brain tumors: neurofibromatosis, tuberous sclerosis, von Hippel-Lindau, and other syndromes. Neurol Clin. 2007;25(4):925–46, viii.

    Google Scholar 

  63. Krutilkova V, Trkova M, Fleitz J, et al. Identification of five new families strengthens the link between childhood choroid plexus carcinoma and germline TP53 mutations. Eur J Cancer. 2005;41(11):1597–603.

    Article  PubMed  CAS  Google Scholar 

  64. Garber JE, Burke EM, Lavally BL, et al. Choroid plexus tumors in the breast cancer-sarcoma syndrome. Cancer. 1990;66(12):2658–60.

    Article  PubMed  CAS  Google Scholar 

  65. Gozali AE, Britt B, Shane L, et al. Choroid plexus tumors; management, outcome, and association with the Li-Fraumeni syndrome: the Children’s Hospital Los Angeles (CHLA) experience, 1991–2010. Pediatr Blood Cancer. 2012;58(6):905–9.

    Article  PubMed  Google Scholar 

  66. Herrmann LJ, Heinze B, Fassnacht M, et al. TP53 germline mutations in adult patients with adrenocortical carcinoma. J Clin Endocrinol Metab. 2012;97(3):E476–85.

    Article  PubMed  CAS  Google Scholar 

  67. Palmero EI, Schuler-Faccini L, Caleffi M, et al. Detection of R337H, a germline TP53 mutation predisposing to multiple cancers, in asymptomatic women participating in a breast cancer screening program in Southern Brazil. Cancer Lett. 2008;261(1):21–5.

    Article  PubMed  CAS  Google Scholar 

  68. Achatz MIW, Hainaut P, Ashton-Prolla P. Highly prevalent TP53 mutation predisposing to many cancers in the Brazilian population: a case for newborn screening? Lancet Oncol. 2009;10(9):920–5.

    Article  PubMed  CAS  Google Scholar 

  69. Pinto EM, Billerbeck AE, Villares MC, et al. Founder effect for the highly prevalent R337H mutation of tumor suppressor p53 in Brazilian patients with adrenocortical tumors. Arq Bras Endocrinol Metabol. 2004;48(5):647–50.

    Article  PubMed  Google Scholar 

  70. Ribeiro RC, Sandrini F, Figueiredo B, et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA. 2001;98(16):9330–5.

    Article  PubMed  CAS  Google Scholar 

  71. Latronico AC, Pinto EM, Domenice S, et al. An inherited mutation outside the highly conserved DNA-binding domain of the p53 tumor suppressor protein in children and adults with sporadic adrenocortical tumors. J Clin Endocrinol Metab. 2001;86(10):4970–3.

    Article  PubMed  CAS  Google Scholar 

  72. Figueiredo BC, Sandrini R, Zambetti GP, et al. Penetrance of adrenocortical tumours associated with the germline TP53 R337H mutation. J Med Genet. 2006;43(1):91–6.

    Article  PubMed  CAS  Google Scholar 

  73. Achatz MI, Olivier M, Le Calvez F, et al. The TP53 mutation, R337H, is associated with Li-Fraumeni and Li-Fraumeni-like syndromes in Brazilian families. Cancer Lett. 2007;245(1–2):96–102.

    Article  PubMed  CAS  Google Scholar 

  74. Assumpcao JG, Seidinger AL, Mastellaro MJ, et al. Association of the germline TP53 R337H mutation with breast cancer in southern Brazil. BMC Cancer. 2008;8:357.

    Article  PubMed  CAS  Google Scholar 

  75. Wong P, Verselis SJ, Garber JE, et al. Prevalence of early onset colorectal cancer in 397 patients with classic Li-Fraumeni syndrome. Gastroenterology. 2006;130(1):73–9.

    Article  PubMed  Google Scholar 

  76. Masciari S, Dewanwala A, Stoffel EM, et al. Gastric cancer in individuals with Li-Fraumeni syndrome. Genet Med. 2011;13(7):651–7.

    Article  PubMed  Google Scholar 

  77. Walsh T, Casadei S, Lee MK, et al. Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA. 2011;108(44):18032–7.

    Article  PubMed  CAS  Google Scholar 

  78. Sui X, Jin L, Huang X, et al. p53 signaling and autophagy in cancer: a revolutionary strategy could be developed for cancer treatment. Autophagy. 2011;7(6):565–71.

    Article  PubMed  CAS  Google Scholar 

  79. Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000;60(24):6788–93.

    PubMed  CAS  Google Scholar 

  80. Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9(10):701–13.

    PubMed  CAS  Google Scholar 

  81. Malkin D. Li-Fraumeni syndrome. Genes Cancer. 2011;2(4):475–84.

    Article  PubMed  CAS  Google Scholar 

  82. Varley J, McGown G, Thorncroft M, et al. Are there low-penetrance TP53 alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet. 1999;65:995–1006.

    Article  PubMed  CAS  Google Scholar 

  83. Birch JM, Hartley AL, Tricker KJ, et al. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Res. 1994;54(5):1298–304.

    PubMed  CAS  Google Scholar 

  84. Bougeard G, Sesboue R, Baert-Desurmont S, et al. Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families. J Med Genet. 2008;45(8):535–8.

    Article  PubMed  CAS  Google Scholar 

  85. Andreotti V, Ciribilli Y, Monti P, et al. p53 transactivation and the impact of mutations, cofactors and small molecules using a simplified yeast-based screening system. PloS One. 2011;6(6):e20643.

    Article  PubMed  CAS  Google Scholar 

  86. Horgan AM, Yang B, Azad AK, et al. Pharmacogenetic and germline prognostic markers of lung cancer. J Thorac Oncol. 2011;6(2):296–304.

    Article  PubMed  Google Scholar 

  87. University of Washington. GeneTests. http://www.genetests.org. Accessed 19 July 2012.

  88. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: genetic/familial high-risk assessment: breast and ovarian. Version 1, 2012. http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Accessed 1 June 2012.

  89. Eeles RA. Germline mutations in the TP53 gene. Cancer Surv. 1995;25:101–24.

    PubMed  CAS  Google Scholar 

  90. Chompret A, Abel A, Stoppa-Lyonnet D, et al. Sensitivity and predictive value of criteria for p53 germline mutation screening. J Med Genet. 2001;38(1):43–7.

    Article  PubMed  CAS  Google Scholar 

  91. Tinat J, Bougeard G, Baert-Desurmont S, et al. 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol. 2009;27(26):e108–9. author reply e110.

    Article  PubMed  Google Scholar 

  92. McCuaig JM, Armel SR, Novokmet A, et al. Routine TP53 testing for breast cancer under age 30: ready for prime time? Fam Cancer. 2012;11(4):607–13.

    Article  PubMed  CAS  Google Scholar 

  93. Gonzalez KD, Buzin CH, Noltner KA, et al. High frequency of de novo mutations in Li-Fraumeni syndrome. J Med Genet. 2009;46(10):689–93.

    Article  PubMed  CAS  Google Scholar 

  94. Evans D, Lunt P, Clancy T, et al. Childhood predictive genetic testing for Li-Fraumeni syndrome. Fam Cancer. 2010;9(1):65–9.

    Article  PubMed  CAS  Google Scholar 

  95. Villani A, Tabori U, Schiffman J, et al. Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol. 2011;12(6):559–67.

    Article  PubMed  CAS  Google Scholar 

  96. Rechitsky S, Verlinsky O, Chistokhina A, et al. Preimplantation genetic diagnosis for cancer predisposition. Reprod Biomed Online. 2002;5(2):148–55.

    Article  PubMed  Google Scholar 

  97. Offit K, Sagi M, Hurley K. Preimplantation genetic diagnosis for cancer syndromes: a new challenge for preventive medicine. JAMA. 2006;296(22):2727–30.

    Article  PubMed  CAS  Google Scholar 

  98. Verlinsky Y, Rechitsky S, Verlinsky O, et al. Preimplantation diagnosis for p53 tumour suppressor gene mutations. Reprod Biomed Online. 2001;2(2):102–5.

    Article  PubMed  CAS  Google Scholar 

  99. Avigad S, Peleg D, Barel D, et al. Prenatal diagnosis in Li-Fraumeni syndrome. J Pediatr Hematol Oncol. 2004;26(9):541–5.

    Article  PubMed  Google Scholar 

  100. Peterson SK, Pentz RD, Marani SK, et al. Psychological functioning in persons considering genetic counseling and testing for Li-Fraumeni syndrome. Psychooncology. 2008;17(8):783–9.

    Article  PubMed  Google Scholar 

  101. Lammens CR, Aaronson NK, Wagner A, et al. Genetic testing in Li-Fraumeni syndrome: uptake and psychosocial consequences. J Clin Oncol. 2010;28(18):3008–14.

    Article  PubMed  Google Scholar 

  102. Lammens CR, Bleiker EM, Verhoef S, et al. Distress in partners of individuals diagnosed with or at high risk of developing tumors due to rare hereditary cancer syndromes. Psychooncology. 2011;20(6):631–8.

    Article  PubMed  CAS  Google Scholar 

  103. Storm C, Agarwal R, Offit K. Ethical and legal implications of cancer genetic testing: do physicians have a duty to warn patients’ relatives about possible genetic risks? J Oncol Pract. 2008;4(5):229–30.

    Article  PubMed  Google Scholar 

  104. Schwarzbraun T, Obenauf AC, Langmann A, et al. Predictive diagnosis of the cancer prone Li-Fraumeni syndrome by accident: new challenges through whole genome array testing. J Med Genet. 2009;46(5):341–4.

    Article  PubMed  CAS  Google Scholar 

  105. Link DC, Schuettpelz LG, Shen D, et al. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA. 2011;305(15):1568–76.

    Article  PubMed  CAS  Google Scholar 

  106. Engstrom PF, Bloom MG, Demetri GD, et al. NCCN molecular testing white paper: effectiveness, efficiency, and reimbursement. J Natl Compr Cancer Netw. 2011;9(Suppl 6):S1–16.

    Google Scholar 

  107. NCCN panel calls for higher standards, better ways of translating molecular genetics into clinical practice. J Natl Compr Canc Netw. 2011;9(4):xliii.

    Google Scholar 

  108. McClure JS. Informing patients: translating the NCCN guidelines. J Natl Compr Cancer Netw. 2011;9(Suppl 3):S4–5.

    Google Scholar 

  109. Netzer C, Klein C, Kohlhase J, et al. New challenges for informed consent through whole genome array testing. J Med Genet. 2009;46(7):495–6.

    Article  PubMed  CAS  Google Scholar 

  110. Lehman CD, Smith RA. The role of MRI in breast cancer screening. J Natl Compr Cancer Netw. 2009;7(10):1109–15.

    Google Scholar 

  111. Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57(2):75–89.

    Article  PubMed  Google Scholar 

  112. Schneider K, Garber J. Li-Fraumeni syndrome. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. GeneReviews. Seattle: University of Washington; 1993.

    Google Scholar 

  113. Masciari S, Van den Abbeele AD, Diller LR, et al. F18-fluorodeoxyglucose-positron emission tomography/computed tomography screening in Li-Fraumeni syndrome. JAMA. 2008;299(11):1315–9.

    Article  PubMed  CAS  Google Scholar 

  114. Monsalve J, Kapur J, Malkin D, et al. Imaging of cancer predisposition syndromes in children. Radiographics. 2011;31(1):263–80.

    Article  PubMed  Google Scholar 

  115. Shlien A, Tabori U, Marshall CR, et al. Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome. Proc Natl Acad Sci USA. 2008;105(32):11264–9.

    Article  PubMed  CAS  Google Scholar 

  116. Tabori U, Dome JS. Telomere biology of pediatric cancer. Cancer Invest. 2007;25(3):197–208.

    Article  PubMed  CAS  Google Scholar 

  117. Tabori U, Nanda S, Druker H, et al. Younger age of cancer initiation is associated with shorter telomere length in Li-Fraumeni syndrome. Cancer Res. 2007;67(4):1415–8.

    Article  PubMed  CAS  Google Scholar 

  118. Ma L, Fishell E, Wright B, et al. Case-control study of factors associated with failure to detect breast cancer by mammography. J Natl Cancer Inst. 1992;84(10):781–5.

    Article  PubMed  CAS  Google Scholar 

  119. Kriege M, Brekelmans CT, Boetes C, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351(5):427–37.

    Article  PubMed  CAS  Google Scholar 

  120. Boyd NF, Dite GS, Stone J, et al. Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002;347(12):886–94.

    Article  PubMed  Google Scholar 

  121. Boyd NF, Jensen HM, Cooke G, et al. Relationship between mammographic and histological risk factors for breast cancer. J Natl Cancer Inst. 1992;84(15):1170–9.

    Article  PubMed  CAS  Google Scholar 

  122. Weitzel JN, Buys SS, Sherman WH, et al. Reduced mammographic density with use of a gonadotropin-releasing hormone agonist-based chemoprevention regimen in BRCA1 carriers. Clin Cancer Res. 2007;13(2 Pt 1):654–8.

    Article  PubMed  CAS  Google Scholar 

  123. Mai PL, Malkin D, Garber JE, et al. Li-Fraumeni syndrome: report of a clinical research workshop and creation of a research consortium. Cancer Genet. 2012;205(10):479–87.

    Article  PubMed  Google Scholar 

  124. Berrak SG, Liu DD, Wrede B, et al. Which therapy works better in choroid plexus carcinomas? J Neurooncol. 2011;103(1):155–62.

    Article  PubMed  CAS  Google Scholar 

  125. Tabori U, Shlien A, Baskin B, et al. TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol. 2010;28(12):1995–2001.

    Article  PubMed  CAS  Google Scholar 

  126. Barton VN, Donson AM, Kleinschmidt-DeMasters BK, et al. PARP1 expression in pediatric central nervous system tumors. Pediatr Blood Cancer. 2009;53(7):1227–30.

    Article  PubMed  Google Scholar 

  127. Zenz T, Mertens D, Dohner H, et al. Molecular diagnostics in chronic lymphocytic leukemia—pathogenetic and clinical implications. Leuk Lymphoma. 2008;49(5):864–73.

    Article  PubMed  CAS  Google Scholar 

  128. Veliz M, Pinilla-Ibarz J. Treatment of relapsed or refractory chronic lymphocytic leukemia. Cancer Control. 2012;19(1):37–53.

    PubMed  Google Scholar 

  129. Keating MJ, O’Brien S, Kontoyiannis D, et al. Results of first salvage therapy for patients refractory to a fludarabine regimen in chronic lymphocytic leukemia. Leuk Lymphoma. 2002;43(9):1755–62.

    Article  PubMed  CAS  Google Scholar 

  130. Tam CS, O’Brien S, Lerner S, et al. The natural history of fludarabine-refractory chronic lymphocytic leukemia patients who fail alemtuzumab or have bulky lymphadenopathy. Leuk Lymphoma. 2007;48(10):1931–9.

    Article  PubMed  CAS  Google Scholar 

  131. Dearden CE, Richards S, Else M, et al. A comparison of the efficacy and safety of oral and intravenous fludarabine in chronic lymphocytic leukemia in the LRF CLL4 trial. Cancer. 2010;117(11):2452–60.

    Article  CAS  Google Scholar 

  132. Pospisilova S, Gonzalez D, Malcikova J, et al. ERIC recommendations on TP53 mutation analysis in chronic lymphocytic leukemia. Leukemia. 2012;26(7):1458–61.

    Article  PubMed  CAS  Google Scholar 

  133. Hallden G, Portella G. Oncolytic virotherapy with modified adenoviruses and novel therapeutic targets. Expert Opin Ther Targets. 2012;16(10):945–58.

    Article  PubMed  CAS  Google Scholar 

  134. Sakai R, Kagawa S, Yamasaki Y, et al. Preclinical evaluation of differentially targeting dual virotherapy for human solid cancer. Mol Cancer Ther. 2010;9(6):1884–93.

    Article  PubMed  CAS  Google Scholar 

  135. Brower V. Cancer gene therapy steadily advances. J Natl Cancer Inst. 2008;100(18):1276–8.

    Article  PubMed  Google Scholar 

  136. Bishop MR, Iversen PL, Bayever E, et al. Phase I trial of an antisense oligonucleotide OL(1)p53 in hematologic malignancies. J Clin Oncol. 1996;14(4):1320–6.

    PubMed  CAS  Google Scholar 

  137. Bishop MR, Jackson JD, Tarantolo SR, et al. Ex vivo treatment of bone marrow with phosphorothioate oligonucleotide OL(1)p53 for autologous transplantation in acute myelogenous leukemia and myelodysplastic syndrome. J Hematother. 1997;6(5):441–6.

    PubMed  CAS  Google Scholar 

  138. Bang YJ. Advances in the management of HER2-positive advanced gastric and gastroesophageal junction cancer. J Clin Gastroenterol. 2012;46(8):637–48.

    Article  PubMed  CAS  Google Scholar 

  139. Jankowitz RC, Brufsky AM. Adjuvant treatment of HER2-positive breast cancer: winning efforts continue to improve HER2-positive patient outcome long-term. Breast Cancer Res. 2012;14(2):308.

    Article  PubMed  CAS  Google Scholar 

  140. Hayashi M, Okumura Y, Osako T, et al. Time to first tumor progression as a predictor of efficacy of continued treatment with trastuzumab beyond progression in human epidermal growth factor receptor 2-positive metastatic breast cancer. Int J Clin Oncol/Jpn Soc Clin Oncol. 2011;16(6):694–700.

    Article  CAS  Google Scholar 

  141. Sachdev JC, Jahanzeb M. Blockade of the HER family of receptors in the treatment of HER2-positive metastatic breast cancer. Clin Breast Cancer. 2012;12(1):19–29.

    Article  PubMed  CAS  Google Scholar 

  142. Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445(7128):656–60.

    Article  PubMed  CAS  Google Scholar 

  143. Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 2006;127(7):1323–34.

    Article  PubMed  CAS  Google Scholar 

  144. Ventura A, Kirsch DG, McLaughlin ME, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–5.

    Article  PubMed  CAS  Google Scholar 

  145. Suzuki K, Matsubara H. Recent advances in p53 research and cancer treatment. J Biomed Biotechnol. 2011;2011:978312.

    PubMed  Google Scholar 

  146. Bykov VJ, Issaeva N, Selivanova G, et al. Mutant p53-dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: a statistical analysis of information in the National Cancer Institute database. Carcinogenesis. 2002;23(12):2011–8.

    Article  PubMed  CAS  Google Scholar 

  147. Rippin TM, Bykov VJ, Freund SM, et al. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells. Oncogene. 2002;21(14):2119–29.

    Article  PubMed  CAS  Google Scholar 

  148. Lehmann BD, Pietenpol JA. Targeting mutant p53 in human tumors. J Clin Oncol. 2012;30(29):3648–50.

    Article  PubMed  CAS  Google Scholar 

  149. Lehmann S, Bykov VJ, Ali D, et al. Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer. J Clin Oncol. 2012;30(29):3633–9.

    Article  PubMed  CAS  Google Scholar 

  150. Clayman GL, el-Naggar AK, Lippman SM, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol. 1998;16(6):2221–32.

    PubMed  CAS  Google Scholar 

  151. Bertheau P, Espie M, Turpin E, et al. TP53 status and response to chemotherapy in breast cancer. Pathobiology. 2008;75(2):132–9.

    Article  PubMed  CAS  Google Scholar 

  152. Chaiteerakij R, Yang JD, Harmsen WS, et al. Risk factors for intrahepatic cholangiocarcinoma: association between metformin use and reduced cancer risk. Hepatology. Epub 2012 Oct 11.

  153. Skinner HD, McCurdy MR, Echeverria AE, et al. Metformin use and improved response to therapy in esophageal adenocarcinoma. Acta Oncol. Epub 2012 Sep 5.

  154. Niraula S, Dowling RJ, Ennis M, et al. Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res Treat. 2012;135(3):821–30.

    Article  PubMed  CAS  Google Scholar 

  155. Lee JH, Jeon SM, Hong SP, et al. Metformin use is associated with a decreased incidence of colorectal adenomas in diabetic patients with previous colorectal cancer. Digest Liver Dis. 2012;44(12):1042–7.

    Article  CAS  Google Scholar 

  156. Buzzai M, Jones RG, Amaravadi RK, et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 2007;67(14):6745–52.

    Article  PubMed  CAS  Google Scholar 

  157. Hamada N, Imaoka T, Masunaga S, et al. Recent advances in the biology of heavy-ion cancer therapy. J Radiat Res. 2010;51(4):365–83.

    Article  PubMed  CAS  Google Scholar 

  158. Collins LC, Marotti JD, Gelber S, et al. Pathologic features and molecular phenotype by patient age in a large cohort of young women with breast cancer. Breast Cancer Res Treat. 2012;131(3):1061–6.

    Article  PubMed  CAS  Google Scholar 

  159. Gonzalez-Angulo AM, Broglio K, Kau SW, et al. Women age < or = 35 years with primary breast carcinoma: disease features at presentation. Cancer. 2005;103(12):2466–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The project described in this article was supported in part by grant numbers RC4CA153828 and R25CA085771 (principal investigator: J. Weitzel) from the National Cancer Institute. The content of the article is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer Institute or the National Institutes of Health. The authors wish to acknowledge Tracy Sulkin for assistance with manuscript preparation.

Conflicts of Interest

The authors state that they have no financial relationship with the funders of this work, and no other conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to April D. Sorrell or Jeffrey N. Weitzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorrell, A.D., Espenschied, C.R., Culver, J.O. et al. Tumor Protein p53 (TP53) Testing and Li-Fraumeni Syndrome. Mol Diagn Ther 17, 31–47 (2013). https://doi.org/10.1007/s40291-013-0020-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-013-0020-0

Keywords

Navigation