Skip to main content

Li-Fraumeni Syndrome

  • Chapter
  • First Online:
The Hereditary Basis of Childhood Cancer

Abstract

Li-Fraumeni syndrome (LFS) is a prototypic cancer susceptibility syndrome, resulting from germline pathogenic variants in the tumor suppressor gene, TP53. Originally described in 1969 (Li, Fraumeni, Jr. Annals of Internal Medicine. 71:747–752) as a familial syndrome characterized by soft tissue sarcoma, breast cancer, and other neoplasms in children and young adults, work over the ensuing decades has led to the recognition of an expanded phenotype of early-onset cancers with varying degrees of aggressiveness. The marked clinical heterogeneity in site and age of cancer onset represents one of the challenges inherent in managing patients with this syndrome. Advances in our understanding of the genomic basis of LFS will play an important role in refining genotype-phenotype correlations within and between LFS families. Furthermore, it can also be expected that the role of p53 in human cancer generally will be more clearly articulated through the ongoing study of the progression to cancer in these patients. This chapter will summarize the current state of the art in the study and genetics-based management of LFS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, F. P., & Fraumeni, J. F., Jr. (1969). Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Annals of Internal Medicine, 71(4), 747–752.

    Article  CAS  PubMed  Google Scholar 

  2. Bougeard, G., Renaux-Petel, M., Flaman, J. M., et al. (2015). Revisiting Li-Fraumeni Syndrome from TP53 mutation carriers. Journal of Clinical Oncology, 33(21), 2345–2352.

    Article  CAS  PubMed  Google Scholar 

  3. Mai, P. L., Best, A. F., Peters, J. A., et al. (2016). Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer, 122(23), 3673–3681.

    Article  CAS  PubMed  Google Scholar 

  4. Rana, H. Q., Gelman, R., LaDuca, H., et al. (2018). Differences in TP53 mutation carrier phenotypes emerge from panel-based testing. Journal of the National Cancer Institute, 110(8), 863–870.

    Article  PubMed  Google Scholar 

  5. Ariffin, H., Hainaut, P., Puzio-Kuter, A., et al. (2014). Whole-genome sequencing analysis of phenotypic heterogeneity and anticipation in Li-Fraumeni cancer predisposition syndrome. Proceedings of the National Academy of Sciences of the United States of America, 111(43), 15497–15501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Garber, J. E., Goldstein, A. M., Kantor, A. F., Dreyfus, M. G., Fraumeni, J. F., Jr., & Li, F. P. (1991). Follow-up study of twenty-four families with Li-Fraumeni syndrome. Cancer Research, 51(22), 6094–6097.

    CAS  PubMed  Google Scholar 

  7. Hisada, M., Garber, J. E., Fung, C. Y., Fraumeni, J. F., Jr., & Li, F. P. (1998). Multiple primary cancers in families with Li-Fraumeni syndrome. Journal of the National Cancer Institute, 90(8), 606–611.

    Article  CAS  PubMed  Google Scholar 

  8. Nichols, K. E., Malkin, D., Garber, J. E., Fraumeni, J. F., Jr., & Li, F. P. (2001). Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer Epidemiology, Biomarkers & Prevention, 10(2), 83–87.

    CAS  Google Scholar 

  9. Birch, J. M., Alston, R. D., McNally, R. J., et al. (2001). Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene, 20(34), 4621–4628.

    Article  CAS  PubMed  Google Scholar 

  10. Olivier, M., Goldgar, D. E., Sodha, N., et al. (2003). Li-Fraumeni and related syndromes: Correlation between tumor type, family structure, and TP53 genotype. Cancer Research, 63(20), 6643–6650.

    CAS  PubMed  Google Scholar 

  11. Wong, P., Verselis, S. J., Garber, J. E., et al. (2006). Prevalence of early onset colorectal cancer in 397 patients with classic Li-Fraumeni syndrome. Gastroenterology, 130(1), 73–79.

    Article  PubMed  Google Scholar 

  12. Gonzalez, K. D., Noltner, K. A., Buzin, C. H., et al. (2009). Beyond Li Fraumeni syndrome: Clinical characteristics of families with p53 germline mutations. Journal of Clinical Oncology, 27(8), 1250–1256.

    Article  CAS  PubMed  Google Scholar 

  13. Tinat, J., Bougeard, G., Baert-Desurmont, S., et al. (2009). Version of the Chompret criteria for Li Fraumeni syndrome. Journal of Clinical Oncology, 27(26), e108–e109. author reply e110.

    Article  PubMed  Google Scholar 

  14. Hettmer, S. A. N., Somers, G. R., Novokmet, A., Wagers, A. J., Diller, L., Rodriguez-Galino, C., Teot, L., & Malkin, D. (2014). Anaplastic rhabdomyosarcoma in TP53 germline mutation carriers. Cancer, 120(7), 1068–1075.

    Google Scholar 

  15. Melhem-Bertrandt, A., Bojadzieva, J., Ready, K. J., et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer, 118(4), 908–913.

    Google Scholar 

  16. Wilson, J. R., Bateman, A. C., Hanson, H., et al. (2010). A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. Journal of Medical Genetics, 47(11), 771–774.

    Article  CAS  PubMed  Google Scholar 

  17. Malkin, D., Li, F. P., Strong, L. C., et al. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science (New York NY), 250(4985), 1233–1238.

    Article  CAS  Google Scholar 

  18. Varley, J. M. (2003). Germline TP53 mutations and Li-Fraumeni syndrome. Human Mutation, 21(3), 313–320.

    Article  CAS  PubMed  Google Scholar 

  19. Varley, J. M., McGown, G., Thorncroft, M., et al. (1997). Germ-line mutations of TP53 in Li-Fraumeni families: An extended study of 39 families. Cancer Research, 57(15), 3245–3252.

    CAS  PubMed  Google Scholar 

  20. Bougeard, G., Sesboue, R., Baert-Desurmont, S., et al. (2008). Molecular basis of the Li-Fraumeni syndrome: An update from the French LFS families. Journal of Medical Genetics, 45(8), 535–538.

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez, K. D., Buzin, C. H., Noltner, K. A., et al. (2009). High frequency of de novo mutations in Li-Fraumeni syndrome. Journal of Medical Genetics, 46(10), 689–693.

    Article  CAS  PubMed  Google Scholar 

  22. Lalloo, F., Varley, J., Ellis, D., et al. (2003). Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet, 361(9363), 1101–1102.

    Article  CAS  PubMed  Google Scholar 

  23. Lek, M., Karczewski, K. J., Minikel, E. V., et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536(7616), 285–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Andrade, K. C., Mirabello, L., Stewart, D. R., et al. (2017). Higher-than-expected population prevalence of potentially pathogenic germline TP53 variants in individuals unselected for cancer history. Human Mutation, 38(12), 1723–1730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sodha, N., Houlston, R. S., Bullock, S., et al. (2002). Increasing evidence that germline mutations in CHEK2 do not cause Li-Fraumeni syndrome. Human Mutation, 20(6), 460–462.

    Article  CAS  PubMed  Google Scholar 

  26. Bell, D. W., Varley, J. M., Szydlo, T. E., et al. (1999). Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science (New York, N.Y.), 286(5449), 2528–2531.

    Article  CAS  Google Scholar 

  27. Ruijs, M. W., Broeks, A., Menko, F. H., et al. (2009). The contribution of CHEK2 to the TP53-negative Li-Fraumeni phenotype. Hered Cancer Clinical Practice, 7(1), 4.

    Article  CAS  Google Scholar 

  28. Siddiqui, R., Onel, K., Facio, F., et al. (2005). The TP53 mutational spectrum and frequency of CHEK2*1100delC in Li-Fraumeni-like kindreds. Familial Cancer, 4(2), 177–181.

    Article  CAS  PubMed  Google Scholar 

  29. Nevanlinna, H., & Bartek, J. (2006). The CHEK2 gene and inherited breast cancer susceptibility. Oncogene, 25(43), 5912–5919.

    Article  CAS  PubMed  Google Scholar 

  30. Weischer, M., Bojesen, S. E., Ellervik, C., Tybjaerg-Hansen, A., & Nordestgaard, B. G. (2008). CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: Meta-analyses of 26,000 patient cases and 27,000 controls. Journal of Clinical Oncology, 26(4), 542–548.

    Article  PubMed  Google Scholar 

  31. Burt, E. C., McGown, G., Thorncroft, M., James, L. A., Birch, J. M., & Varley, J. M. (1999). Exclusion of the genes CDKN2 and PTEN as causative gene defects in Li-Fraumeni syndrome. British Journal of Cancer, 80(1-2), 9–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Portwine, C., Lees, J., Verselis, S., Li, F. P., & Malkin, D. (2000). Absence of germline p16(INK4a) alterations in p53 wild type Li-Fraumeni syndrome families. Journal of Medical Genetics, 37(8), E13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stone, J. G., Eeles, R. A., Sodha, N., Murday, V., Sheriden, E., & Houlston, R. S. (1999). Analysis of Li-Fraumeni syndrome and Li-Fraumeni-like families for germline mutations in Bcl10. Cancer Letters, 147(1-2), 181–185.

    Article  CAS  PubMed  Google Scholar 

  34. Bougeard, G., Limacher, J. M., Martin, C., et al. (2001). Detection of 11 germline inactivating TP53 mutations and absence of TP63 and HCHK2 mutations in 17 French families with Li-Fraumeni or Li-Fraumeni-like syndrome. Journal of Medical Genetics, 38(4), 253–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barlow, J. W., Mous, M., Wiley, J. C., et al. (2004). Germ line BAX alterations are infrequent in Li-Fraumeni syndrome. Cancer Epidemiology, Biomarkers & Prevention, 13(8), 1403–1406.

    CAS  Google Scholar 

  36. Finkova, A., Vazna, A., Hrachovina, O., Bendova, S., Prochazkova, K., & Sedlacek, Z. (2009). The TP53 gene promoter is not methylated in families suggestive of Li-Fraumeni syndrome with no germline TP53 mutations. Cancer Genetics and Cytogenetics, 193(1), 63–66.

    Article  CAS  PubMed  Google Scholar 

  37. Bouaoun, L., Sonkin, D., Ardin, M., et al. (2016). TP53 variations in human cancers: New lessons from the IARC TP53 database and genomics data. Human Mutation, 37(9), 865–876.

    Article  CAS  PubMed  Google Scholar 

  38. Bougeard, G., Brugieres, L., Chompret, A., et al. (2003). Screening for TP53 rearrangements in families with the Li-Fraumeni syndrome reveals a complete deletion of the TP53 gene. Oncogene, 22(6), 840–846.

    Article  CAS  PubMed  Google Scholar 

  39. Kotler, E., Shani, O., Goldfeld, G., et al. (2018). A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Molecular Cell, 71(5), 873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giacomelli, A. O., Yang, X., Lintner, R. E., et al. (2018). Mutational processes shape the landscape of TP53 mutations in human cancer. Nature Genetics, 50(10), 1381–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kato, S., Han, S. Y., Liu, W., et al. (2003). Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8424–8429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sabapathy, K., & Lane, D. P. (2018). Therapeutic targeting of p53: All mutants are equal, but some mutants are more equal than others. Nature Reviews. Clinical Oncology, 15(1), 13–30.

    Article  CAS  PubMed  Google Scholar 

  43. Birch, J. M., Blair, V., Kelsey, A. M., et al. (1998). Cancer phenotype correlates with constitutional TP53 genotype in families with the Li-Fraumeni syndrome. Oncogene, 17(9), 1061–1068.

    Article  CAS  PubMed  Google Scholar 

  44. Olive, K. P., Tuveson, D. A., Ruhe, Z. C., et al. (2004). Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell, 119(6), 847–860.

    Article  CAS  PubMed  Google Scholar 

  45. Lang, G. A., Iwakuma, T., Suh, Y. A., et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell, 119(6), 861–872.

    Article  CAS  PubMed  Google Scholar 

  46. Weisz, L., Zalcenstein, A., Stambolsky, P., et al. (2004). Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Research, 64(22), 8318–8327.

    Article  CAS  PubMed  Google Scholar 

  47. Willis, A., Jung, E. J., Wakefield, T., & Chen, X. (2004). Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene, 23(13), 2330–2338.

    Article  CAS  PubMed  Google Scholar 

  48. Chene, P. (1998). In vitro analysis of the dominant negative effect of p53 mutants. Journal of Molecular Biology, 281(2), 205–209.

    Article  CAS  PubMed  Google Scholar 

  49. Malkin, D. (2011). Li-fraumeni syndrome. Genes & Cancer, 2(4), 475–484.

    Article  CAS  Google Scholar 

  50. Ribeiro, R. C., Sandrini, F., Figueiredo, B., et al. (2001). An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 98(16), 9330–9335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Petitjean, A., Mathe, E., Kato, S., et al. (2007). Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Human Mutation, 28(6), 622–629.

    Article  CAS  PubMed  Google Scholar 

  52. Wasserman, J. D., Zambetti, G. P., & Malkin, D. (2012). Towards an understanding of the role of p53 in adrenocortical carcinogenesis. Molecular and Cellular Endocrinology, 351(1), 101–110.

    Article  CAS  PubMed  Google Scholar 

  53. Wasserman, J. D., Novokmet, A., Eichler-Jonsson, C., et al. (2015). Prevalence and functional consequence of TP53 mutations in pediatric adrenocortical carcinoma: A children's oncology group study. Journal of Clinical Oncology, 33(6), 602–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fischer, N. W., Prodeus, A., & Gariépy, J. (2018). Survival in males with glioma and gastric adenocarcinoma correlates with mutant p53 residual transcriptional activity. JCI Insight, 3, 15.

    Article  Google Scholar 

  55. Chène, P. (2001). The role of tetramerization in p53 function. Oncogene, 20(21), 2611–2617.

    Article  PubMed  Google Scholar 

  56. Fischer, N. W., Prodeus, A., Malkin, D., & Gariépy, J. (2016). p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle, 15(23), 3210–3219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fischer, N. W., Prodeus, A., Tran, J., Malkin, D., & Gariépy, J. (2018). Association between the oligomeric status of p53 and clinical outcomes in Li-Fraumeni syndrome. Journal of the National Cancer Institute, 110, 1418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bond, G. L., Hu, W., Bond, E. E., et al. (2004). A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell, 119(5), 591–602.

    Article  CAS  PubMed  Google Scholar 

  59. Bougeard, G., Baert-Desurmont, S., Tournier, I., et al. (2006). Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. Journal of Medical Genetics, 43(6), 531–533.

    Article  CAS  PubMed  Google Scholar 

  60. Fang, S., Krahe, R., Lozano, G., et al. (2010). Effects of MDM2, MDM4 and TP53 codon 72 polymorphisms on cancer risk in a cohort study of carriers of TP53 germline mutations. PLoS One, 5(5), e10813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Marcel, V., Palmero, E. I., Falagan-Lotsch, P., et al. (2009). TP53 PIN3 and MDM2 SNP309 polymorphisms as genetic modifiers in the Li-Fraumeni syndrome: Impact on age at first diagnosis. Journal of Medical Genetics, 46(11), 766–772.

    Article  CAS  PubMed  Google Scholar 

  62. Wu, C. C., Krahe, R., Lozano, G., et al. (2011). Joint effects of germ-line TP53 mutation, MDM2 SNP309, and gender on cancer risk in family studies of Li-Fraumeni syndrome. Human Genetics, 129(6), 663–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Renaux-Petel, M., Sesboüé, R., Baert-Desurmont, S., et al. (2014). The MDM2 285G-309G haplotype is associated with an earlier age of tumour onset in patients with Li-Fraumeni syndrome. Familial Cancer, 13(1), 127–130.

    Article  CAS  PubMed  Google Scholar 

  64. Id Said, B., Kim, H., Tran, J., Novokmet, A., & Malkin, D. (2016). Super-transactivation TP53 variant in the germline of a family with Li-Fraumeni syndrome. Human Mutation, 37(9), 889–892.

    Article  CAS  PubMed  Google Scholar 

  65. Fang, S., Krahe, R., Bachinski, L. L., Zhang, B., Amos, C. I., & Strong, L. C. (2011). Sex-specific effect of the TP53 PIN3 polymorphism on cancer risk in a cohort study of TP53 germline mutation carriers. Human Genetics, 130(6), 789–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shlien, A., Tabori, U., Marshall, C. R., et al. (2008). Excessive genomic DNA copy number variation in the Li-Fraumeni cancer predisposition syndrome. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11264–11269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tabori, U., Nanda, S., Druker, H., Lees, J., & Malkin, D. (2007). Younger age of cancer initiation is associated with shorter telomere length in Li-Fraumeni syndrome. Cancer Research, 67(4), 1415–1418.

    Article  CAS  PubMed  Google Scholar 

  68. Trkova, M., Prochazkova, K., Krutilkova, V., Sumerauer, D., & Sedlacek, Z. (2007). Telomere length in peripheral blood cells of germline TP53 mutation carriers is shorter than that of normal individuals of corresponding age. Cancer, 110(3), 694–702.

    Article  CAS  PubMed  Google Scholar 

  69. Rausch, T., Jones, D. T., Zapatka, M., et al. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148(1-2), 59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, F. P., Fraumeni, J. F., Jr., Mulvihill, J. J., et al. (1988). A cancer family syndrome in twenty-four kindreds. Cancer Research, 48(18), 5358–5362.

    CAS  PubMed  Google Scholar 

  71. Birch, J. M., Hartley, A. L., Tricker, K. J., et al. (1994). Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families. Cancer Research, 54(5), 1298–1304.

    CAS  PubMed  Google Scholar 

  72. Eeles, R. A. (1995). Germline mutations in the TP53 gene. Cancer Surveys, 25, 101–124.

    CAS  PubMed  Google Scholar 

  73. Chompret, A., Abel, A., Stoppa-Lyonnet, D., et al. (2001). Sensitivity and predictive value of criteria for p53 germline mutation screening. Journal of Medical Genetics, 38(1), 43–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chompret, A., Brugieres, L., Ronsin, M., et al. (2000). P53 germline mutations in childhood cancers and cancer risk for carrier individuals. British Journal of Cancer, 82(12), 1932–1937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krutilkova, V., Trkova, M., Fleitz, J., et al. (2005). Identification of five new families strengthens the link between childhood choroid plexus carcinoma and germline TP53 mutations. European Journal of Cancer, 41(11), 1597–1603.

    Article  CAS  PubMed  Google Scholar 

  76. NCCN Clinical Practice Guidelines in Oncology. Genetic/Familial High-risk Assessment: Breast and Ovarian. http://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf. Published 2012. Accessed.

  77. McCuaig, J. M., Armel, S. R., Novokmet, A., et al. Routine TP53 testing for breast cancer under age 30: Ready for prime time? Familial Cancer, 11(4), 607–613.

    Google Scholar 

  78. Mouchawar, J., Korch, C., Byers, T., et al. (2010). Population-based estimate of the contribution of TP53 mutations to subgroups of early-onset breast cancer: Australian Breast Cancer Family Study. Cancer Research, 70(12), 4795–4800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lalloo, F., Varley, J., Moran, A., et al. (2006). BRCA1, BRCA2 and TP53 mutations in very early-onset breast cancer with associated risks to relatives. European Journal of Cancer, 42(8), 1143–1150.

    Article  CAS  PubMed  Google Scholar 

  80. Villani, A., Tabori, U., Schiffman, J., et al. (2011). Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: A prospective observational study. The Lancet Oncology, 12(6), 559–567.

    Article  CAS  PubMed  Google Scholar 

  81. Villani, A., Shore, A., Wasserman, J. D., et al. (2016). Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. The Lancet Oncology, 17(9), 1295–1305.

    Article  CAS  PubMed  Google Scholar 

  82. Masciari, S., Van den Abbeele, A. D., Diller, L. R., et al. (2008). F18-fluorodeoxyglucose-positron emission tomography/computed tomography screening in Li-Fraumeni syndrome. Journal of the American Medical Association, 299(11), 1315–1319.

    Article  CAS  PubMed  Google Scholar 

  83. Ballinger, M. L., Best, A., Mai, P. L., et al. (2017). Baseline surveillance in Li-Fraumeni syndrome using whole-body magnetic resonance imaging: A meta-analysis. JAMA Oncology, 3(12), 1634–1639.

    Article  PubMed  Google Scholar 

  84. Mai, P. L., Khincha, P. P., Loud, J. T., et al. (2017). Prevalence of cancer at baseline screening in the National Cancer Institute Li-Fraumeni Syndrome Cohort. JAMA Oncology, 3(12), 1640–1645.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lammens, C. R., Bleiker, E. M., Aaronson, N. K., et al. (2010). Regular surveillance for Li-Fraumeni syndrome: Advice, adherence and perceived benefits. Familial Cancer, 9(4), 647–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Le Bihan, C., Moutou, C., Brugieres, L., Feunteun, J., & Bonaiti-Pellie, C. (1995). ARCAD: A method for estimating age-dependent disease risk associated with mutation carrier status from family data. Genetic Epidemiology, 12(1), 13–25.

    Article  PubMed  Google Scholar 

  87. (2009). Genetic testing in asymptomatic minors: Recommendations of the European Society of Human Genetics. European Journal of Human Genetics, 17(6), 720–721.

    Google Scholar 

  88. American Society of Human Genetics Board of Directors, American College of Medical Genetics Board of Directors. (1995). Points to consider: Ethical, legal, and psychosocial implications of genetic testing in children and adolescents. American Journal of Human Genetics, 57(5), 1233–1241.

    Google Scholar 

  89. (1996). Statement of the American Society of Clinical Oncology: Genetic testing for cancer susceptibility, adopted on February 20, 1996. Journal of Clinical Oncology, 14(5), 1730–1736. discussion 1737-1740.

    Google Scholar 

  90. (2003). American Society of Clinical Oncology policy statement update: Genetic testing for cancer susceptibility. Journal of Clinical Oncology, 21(12), 2397–2406.

    Google Scholar 

  91. Arbour, L., & Canadian Paediatric Society BC, Canadian College of Medical Geneticists, Ethics and Public Policy Committee. (2003). Guidelines for genetic testing of healthy children. Paediatrics & Child Health, 8(1), 42–45.

    Article  Google Scholar 

  92. Nelson, R. M., Botkjin, J. R., Kodish, E. D., et al. (2001). Ethical issues with genetic testing in pediatrics. Pediatrics, 107(6), 1451–1455.

    Article  Google Scholar 

  93. Tozzo, P., Caenazzo, L., & Rodriguez, D. (2012). Genetic testing for minors: Comparison between Italian and British guidelines. Genetics Research International, 2012, 786930.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Borry, P., Evers-Kiebooms, G., Cornel, M. C., Clarke, A., & Dierickx, K. (2009). Genetic testing in asymptomatic minors: Background considerations towards ESHG recommendations. European Journal of Human Genetics, 17(6), 711–719.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cameron, L. D., & Muller, C. (2009). Psychosocial aspects of genetic testing. Current Opinion in Psychiatry, 22(2), 218–223.

    Article  PubMed  Google Scholar 

  96. Robson, M. E., Storm, C. D., Weitzel, J., Wollins, D. S., & Offit, K. (2010). American Society of Clinical Oncology policy statement update: Genetic and genomic testing for cancer susceptibility. Journal of Clinical Oncology, 28(5), 893–901.

    Article  PubMed  Google Scholar 

  97. Robson, M. E., Bradbury, A. R., Arun, B., et al. (2015). American Society of Clinical Oncology Policy Statement Update: Genetic and genomic testing for cancer susceptibility. Journal of Clinical Oncology, 33(31), 3660–3667.

    Article  CAS  PubMed  Google Scholar 

  98. Bioethics Co. (2001). Ethical issues with genetic testing in pediatrics. Pediatrics, 107(6), 1451–1455.

    Article  Google Scholar 

  99. Druker, H., Zelley, K., McGee, R. B., et al. (2017). Genetic counselor recommendations for cancer predisposition evaluation and surveillance in the pediatric oncology patient. Clinical Cancer Research, 23(13), e91–e97.

    Article  PubMed  Google Scholar 

  100. Meiser, B. (2005). Psychological impact of genetic testing for cancer susceptibility: An update of the literature. Psycho-Oncology, 14(12), 1060–1074.

    Article  PubMed  Google Scholar 

  101. Lammens, C. R., Aaronson, N. K., Wagner, A., et al. (2010). Genetic testing in Li-Fraumeni syndrome: Uptake and psychosocial consequences. Journal of Clinical Oncology, 28(18), 3008–3014.

    Article  PubMed  Google Scholar 

  102. Lammens, C. R., Bleiker, E. M., Verhoef, S., et al. (2011). Distress in partners of individuals diagnosed with or at high risk of developing tumors due to rare hereditary cancer syndromes. Psycho-Oncology, 20(6), 631–638.

    Article  CAS  PubMed  Google Scholar 

  103. Schneider, K. A., Patenaude, A. F., & Garber, J. E. (1995). Testing for cancer genes: Decisions, decisions. Nature Medicine, 1(4), 302–303.

    Article  CAS  PubMed  Google Scholar 

  104. Peterson, S. K., Pentz, R. D., Blanco, A. M., et al. (2006). Evaluation of a decision aid for families considering p53 genetic counseling and testing. Genetics in Medicine, 8(4), 226–233.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Evans, D. G., Maher, E. R., Macleod, R., Davies, D. R., & Craufurd, D. (1997). Uptake of genetic testing for cancer predisposition. Journal of Medical Genetics, 34(9), 746–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wagner, A., Tops, C., Wijnen, J. T., et al. (2002). Genetic testing in hereditary non-polyposis colorectal cancer families with a MSH2, MLH1, or MSH6 mutation. Journal of Medical Genetics, 39(11), 833–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Meijers-Heijboer, E. J., Verhoog, L. C., Brekelmans, C. T., et al. (2000). Presymptomatic DNA testing and prophylactic surgery in families with a BRCA1 or BRCA2 mutation. Lancet, 355(9220), 2015–2020.

    Article  CAS  PubMed  Google Scholar 

  108. Alderfer, M. A., Zelley, K., Lindell, R. B., et al. (2015). Parent decision-making around the genetic testing of children for germline TP53 mutations. Cancer, 121(2), 286–293.

    Article  PubMed  Google Scholar 

  109. Offit, K., Sagi, M., & Hurley, K. (2006). Preimplantation genetic diagnosis for cancer syndromes: A new challenge for preventive medicine. Journal of the American Medical Association, 296(22), 2727–2730.

    Article  CAS  PubMed  Google Scholar 

  110. Lammens, C., Bleiker, E., Aaronson, N., et al. (2009). Attitude towards pre-implantation genetic diagnosis for hereditary cancer. Familial Cancer, 8(4), 457–464.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Achatz, M. I., Hainaut, P., & Ashton-Prolla, P. (2009). Highly prevalent TP53 mutation predisposing to many cancers in the Brazilian population: A case for newborn screening? The Lancet Oncology, 10(9), 920–925.

    Article  PubMed  CAS  Google Scholar 

  112. Julian-Reynier, C., Chabal, F., Frebourg, T., et al. (2009). Professionals assess the acceptability of preimplantation genetic diagnosis and prenatal diagnosis for managing inherited predisposition to cancer. Journal of Clinical Oncology, 27(27), 4475–4480.

    Article  PubMed  Google Scholar 

  113. Limacher, J. M., Frebourg, T., Natarajan-Ame, S., & Bergerat, J. P. (2001). Two metachronous tumors in the radiotherapy fields of a patient with Li-Fraumeni syndrome. International Journal of Cancer, 96(4), 238–242.

    Article  CAS  PubMed  Google Scholar 

  114. Pierce, L. J., & Haffty, B. G. (2011). Radiotherapy in the treatment of hereditary breast cancer. Seminars in Radiation Oncology, 21(1), 43–50.

    Article  PubMed  Google Scholar 

  115. Heymann, S., Delaloge, S., Rahal, A., et al. (2010). Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome. Radiation Oncology, 5, 104.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Delia, D., Goi, K., Mizutani, S., et al. (1997). Dissociation between cell cycle arrest and apoptosis can occur in Li-Fraumeni cells heterozygous for p53 gene mutations. Oncogene, 14(18), 2137–2147.

    Article  CAS  PubMed  Google Scholar 

  117. Boyle, J. M., Spreadborough, A. R., Greaves, M. J., Birch, J. M., Varley, J. M., & Scott, D. (2002). Delayed chromosome changes in gamma-irradiated normal and Li-Fraumeni fibroblasts. Radiation Research, 157(2), 158–165.

    Article  CAS  PubMed  Google Scholar 

  118. Boyle, J. M., Mitchell, E. L., Greaves, M. J., et al. (1998). Chromosome instability is a predominant trait of fibroblasts from Li-Fraumeni families. British Journal of Cancer, 77(12), 2181–2192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sproston, A. R., Boyle, J. M., Heighway, J., Birch, J. M., & Scott, D. (1996). Fibroblasts from Li-Fraumeni patients are resistant to low dose-rate irradiation. International Journal of Radiation Biology, 70(2), 145–150.

    Article  CAS  PubMed  Google Scholar 

  120. Lu, C., & El-Deiry, W. S. (2009). Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis, 14(4), 597–606.

    Article  CAS  PubMed  Google Scholar 

  121. Nemunaitis, J. M., & Nemunaitis, J. (2008). Potential of Advexin: A p53 gene-replacement therapy in Li-Fraumeni syndrome. Future Oncology, 4(6), 759–768.

    Article  CAS  PubMed  Google Scholar 

  122. Komarova, E. A., Antoch, M. P., Novototskaya, L. R., et al. (2012). Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/− mice. Aging (Albany NY), 4(10), 709–714.

    Article  CAS  Google Scholar 

  123. Liu, J., Zhang, C., Hu, W., & Feng, Z. (2019). Tumor suppressor p53 and metabolism. Journal of Molecular Cell Biology, 11(4), 284–292.

    Article  CAS  PubMed  Google Scholar 

  124. Wang, P. Y., Ma, W., Park, J. Y., et al. (2013). Increased oxidative metabolism in the Li-Fraumeni syndrome. The New England Journal of Medicine, 368(11), 1027–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang, P. Y., Li, J., Walcott, F. L., et al. (2017). Inhibiting mitochondrial respiration prevents cancer in a mouse model of Li-Fraumeni syndrome. The Journal of Clinical Investigation, 127(1), 132–136.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by funds from the Canadian Institutes for Health Research (Grant #143234) and Terry Fox Research Institute (#1081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Malkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s) under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Villani, A., Frebourg, T., Malkin, D. (2021). Li-Fraumeni Syndrome. In: Malkin, D. (eds) The Hereditary Basis of Childhood Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-74448-9_1

Download citation

Publish with us

Policies and ethics