Skip to main content
Log in

Sex Differences in Endurance Running

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

In recent years, there has been a significant expansion in female participation in endurance (road and trail) running. The often reported sex differences in maximal oxygen uptake (VO2max) are not the only differences between sexes during prolonged running. The aim of this narrative review was thus to discuss sex differences in running biomechanics, economy (both in fatigue and non-fatigue conditions), substrate utilization, muscle tissue characteristics (including ultrastructural muscle damage), neuromuscular fatigue, thermoregulation and pacing strategies. Although males and females do not differ in terms of running economy or endurance (i.e. percentage VO2max sustained), sex-specificities exist in running biomechanics (e.g. females have greater non-sagittal hip and knee joint motion compared to males) that can be partly explained by anatomical (e.g. wider pelvis, larger femur-tibia angle, shorter lower limb length relative to total height in females) differences. Compared to males, females also show greater proportional area of type I fibres, are more able to use fatty acids and preserve carbohydrates during prolonged exercise, demonstrate a more even pacing strategy and less fatigue following endurance running exercise. These differences confer an advantage to females in ultra-endurance performance, but other factors (e.g. lower O2 carrying capacity, greater body fat percentage) counterbalance these potential advantages, making females outperforming males a rare exception. The present literature review also highlights the lack of sex comparison in studies investigating running biomechanics in fatigue conditions and during the recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hafstad AD, Boardman N, Lund J, Hagve M, Wisloff U, Larsen TS, et al. Exercise-induced increase in cardiac efficiency: the impact of intensity. Circulation. 2009;120(18):S880.

    Google Scholar 

  2. Hespanhol Junior LC, Pillay JD, van Mechelen W, Verhagen E. Meta-analyses of the effects of habitual running on indices of health in physically inactive adults. Sports Med. 2015;45(10):1455–68. https://doi.org/10.1007/s40279-015-0359-y.

    Article  PubMed  PubMed Central  Google Scholar 

  3. van Mechelen W. Running injuries. A review of the epidemiological literature. Sports Med. 1992;14(5):320–35.

    PubMed  Google Scholar 

  4. Hanold MT. Beyond the marathon: (De) construction of female ultrarunning bodies. Sociol Sport J. 2010;27(2):160–77.

    Article  Google Scholar 

  5. Costello JT, Bieuzen F, Bleakley CM. Where are all the female participants in sports and exercise medicine research? Eur J Sport Sci. 2014;14(8):847–51.

    Article  PubMed  Google Scholar 

  6. Nuzzo J. Volunteer bias and female participation in exercise and sports science research. Quest. 2021;73(1):82–101.

    Article  Google Scholar 

  7. Hoffman MD. Performance trends in 161-km ultramarathons. Int J Sports Med. 2010;31(1):31–7. https://doi.org/10.1055/s-0029-1239561.

    Article  CAS  PubMed  Google Scholar 

  8. Whipp BJ, Ward SA. Will women soon outrun men? Nature. 1992;355(6355):25. https://doi.org/10.1038/355025a0.

    Article  CAS  PubMed  Google Scholar 

  9. Tatem AJ, Guerra CA, Atkinson PM, Hay SI. Athletics: momentous sprint at the 2156 Olympics? Nature. 2004;431(7008):525. https://doi.org/10.1038/431525a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ochert A. Could women take a lead over men in the long run? Nature. 1996;382(6586):15–6. https://doi.org/10.1038/382015a0.

    Article  CAS  PubMed  Google Scholar 

  11. Bam J, Noakes TD, Juritz J, Dennis SC. Could women outrun men in ultramarathon races? Med Sci Sports Exerc. 1997;29(2):244–7. https://doi.org/10.1097/00005768-199702000-00013.

    Article  CAS  PubMed  Google Scholar 

  12. Speechly DP, Taylor SR, Rogers GG. Differences in ultra-endurance exercise in performance-matched male and female runners. Med Sci Sports Exerc. 1996;28(3):359–65.

    CAS  PubMed  Google Scholar 

  13. Cheuvront SN, Carter R, Deruisseau KC, Moffatt RJ. Running performance differences between men and women: an update. Sports Med (Auckland, NZ). 2005;35(12):1017–24. https://doi.org/10.2165/00007256-200535120-00002.

    Article  Google Scholar 

  14. Coast JR, Blevins JS, Wilson BA. Do gender differences in running performance disappear with distance? Can J Appl Physiol. 2004;29(2):139–45.

    Article  PubMed  Google Scholar 

  15. Lepers R, Cattagni T. Do older athletes reach limits in their performance during marathon running? Age (Dordr). 2012;34(3):773–81. https://doi.org/10.1007/s11357-011-9271-z.

    Article  Google Scholar 

  16. Knechtle B, Rust CA, Rosemann T, Lepers R. Age-related changes in 100-km ultra-marathon running performance. Age (Dordr). 2012;34(4):1033–45. https://doi.org/10.1007/s11357-011-9290-9.

    Article  Google Scholar 

  17. da Fonseca-Engelhardt K, Knechtle B, Rust CA, Knechtle P, Lepers R, Rosemann T. Participation and performance trends in ultra-endurance running races under extreme conditions—’Spartathlon’ versus “Badwater.” Extrem Physiol Med. 2013;2(1):15. https://doi.org/10.1186/2046-7648-2-15.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Peter L, Rust CA, Knechtle B, Rosemann T, Lepers R. Sex differences in 24-hour ultra-marathon performance—a retrospective data analysis from 1977 to 2012. Clinics (Sao Paulo). 2014;69(1):38–46. https://doi.org/10.6061/clinics/2014(01)06.

    Article  Google Scholar 

  19. Tiller NB, Elliott-Sale KJ, Knechtle B, Wilson PB, Roberts JD, Millet GY. Do sex differences in physiology confer a female advantage in ultra-endurance sport? Sports Med. 2021. https://doi.org/10.1007/s40279-020-01417-2.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84. https://doi.org/10.1097/00005768-200001000-00012.

    Article  PubMed  Google Scholar 

  21. McLaughlin JE, Howley ET, Bassett DR, Thompson DL, Fitzhugh EC. Test of the classic model for predicting endurance running performance. Med Sci Sports Exerc. 2010;42(5):991–7. https://doi.org/10.1249/MSS.0b013e3181c0669d.

    Article  PubMed  Google Scholar 

  22. Davies CT, Thompson MW. Aerobic performance of female marathon and male ultramarathon athletes. Eur J Appl Physiol Occup Physiol. 1979;41(4):233–45.

    Article  CAS  PubMed  Google Scholar 

  23. Helgerud J. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Eur J Appl Physiol Occup Physiol. 1994;68(2):155–61. https://doi.org/10.1007/BF00244029.

    Article  CAS  PubMed  Google Scholar 

  24. Helgerud J, Ingjer F, Stromme SB. Sex differences in performance-matched marathon runners. Eur J Appl Physiol Occup Physiol. 1990;61(5–6):433–9.

    Article  CAS  PubMed  Google Scholar 

  25. Maughan RJ, Leiper JB. Aerobic capacity and fractional utilisation of aerobic capacity in elite and non-elite male and female marathon runners. Eur J Appl Physiol Occup Physiol. 1983;52(1):80–7. https://doi.org/10.1007/BF00429030.

    Article  CAS  PubMed  Google Scholar 

  26. Sparling PB, Cureton KJ. Biological determinants of the sex difference in 12-min run performance. Med Sci Sports Exerc. 1983;15(3):218–23.

    Article  CAS  PubMed  Google Scholar 

  27. Calbet JA, Joyner MJ. Disparity in regional and systemic circulatory capacities: do they affect the regulation of the circulation? Acta Physiol (Oxf). 2010;199(4):393–406. https://doi.org/10.1111/j.1748-1716.2010.02125.x.

    Article  CAS  Google Scholar 

  28. Carter SL, Rennie C, Tarnopolsky MA. Substrate utilization during endurance exercise in men and women after endurance training. Am J Physiol Endocrinol Metab. 2001;280(6):E898-907. https://doi.org/10.1152/ajpendo.2001.280.6.E898.

    Article  CAS  PubMed  Google Scholar 

  29. Phillips SM, Atkinson SA, Tarnopolsky MA, MacDougall JD. Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J Appl Physiol (1985). 1993;75(5):2134–41. https://doi.org/10.1152/jappl.1993.75.5.2134.

    Article  CAS  Google Scholar 

  30. McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol Endocrinol Metab. 2000;278(4):E580–7. https://doi.org/10.1152/ajpendo.2000.278.4.E580.

    Article  CAS  PubMed  Google Scholar 

  31. Cureton KJ. Matching of male and female subjects using VO2max. Res Q Exerc Sport. 1981;52(2):264–8. https://doi.org/10.1080/02701367.1981.10607865.

    Article  CAS  PubMed  Google Scholar 

  32. Sparling PB. A meta-analysis of studies comparing maximal oxygen uptake in men and women. Res Q Exerc Sport. 1980;51(3):542–52. https://doi.org/10.1080/02701367.1980.10608077.

    Article  CAS  PubMed  Google Scholar 

  33. Joyner MJ. Physiological limits to endurance exercise performance: influence of sex. J Physiol. 2017;595(9):2949–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cureton K, Bishop P, Hutchinson P, Newland H, Vickery S, Zwiren L. Sex difference in maximal oxygen uptake. Effect of equating haemoglobin concentration. Eur J Appl Physiol Occup Physiol. 1986;54(6):656–60. https://doi.org/10.1007/BF00943356.

    Article  CAS  PubMed  Google Scholar 

  35. Garcia-Pinillos F, Jerez-Mayorga D, Latorre-Roman PA, Ramirez-Campillo R, Sanz-Lopez F, Roche-Seruendo LE. How do amateur endurance runners alter spatiotemporal parameters and step variability as running velocity increases? A sex comparison. J Hum Kinet. 2020;72:39–49. https://doi.org/10.2478/hukin-2019-0098.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nelson RC, Brooks CM, Pike NL. Biomechanical comparison of male and female distance runners. Ann NY Acad Sci. 1977;301:793–807. https://doi.org/10.1111/j.1749-6632.1977.tb38247.x.

    Article  CAS  PubMed  Google Scholar 

  37. Roche-Seruendo L, Latorre-Román P, Soto-Hermoso V, García-Pinillos F. Do sex and body structure influence spatiotemporal step characteristics in endurance runners? Sci Sports. 2019;34(6):412.e1-412.e9.

    Article  Google Scholar 

  38. Takabayashi T, Edama M, Nakamura M, Nakamura E, Inai T, Kubo M. Gender differences associated with rearfoot, midfoot, and forefoot kinematics during running. Eur J Sport Sci. 2017;17(10):1289–96. https://doi.org/10.1080/17461391.2017.1382578.

    Article  PubMed  Google Scholar 

  39. Schache AG, Blanch P, Rath D, Wrigley T, Bennell K. Differences between the sexes in the three-dimensional angular rotations of the lumbo-pelvic-hip complex during treadmill running. J Sports Sci. 2003;21(2):105–18. https://doi.org/10.1080/0264041031000070859.

    Article  PubMed  Google Scholar 

  40. Almonroeder TG, Benson LC. Sex differences in lower extremity kinematics and patellofemoral kinetics during running. J Sports Sci. 2017;35(16):1575–81. https://doi.org/10.1080/02640414.2016.1225972.

    Article  PubMed  Google Scholar 

  41. Bazuelo-Ruiz B, Durá-Gil JV, Palomares N, Medina E, Llana-Belloch S. Effect of fatigue and gender on kinematics and ground reaction forces variables in recreational runners. PeerJ. 2018;6:e4489. https://doi.org/10.7717/peerj.4489.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chumanov ES, Wall-Scheffler C, Heiderscheit BC. Gender differences in walking and running on level and inclined surfaces. Clin Biomech (Bristol, Avon). 2008;23(10):1260–8. https://doi.org/10.1016/j.clinbiomech.2008.07.011.

    Article  Google Scholar 

  43. Ferber R, Davis IM, Williams DS 3rd. Gender differences in lower extremity mechanics during running. Clin Biomech (Bristol, Avon). 2003;18(4):350–7.

    Article  Google Scholar 

  44. Gehring D, Mornieux G, Fleischmann J, Gollhofer A. Knee and hip joint biomechanics are gender-specific in runners with high running mileage. Int J Sports Med. 2014;35(2):153–8. https://doi.org/10.1055/s-0033-1343406.

    Article  CAS  PubMed  Google Scholar 

  45. Hannigan JJ, Osternig LR, Chou L-S. Sex-specific relationships between hip strength and hip, pelvis, and trunk kinematics in healthy runners. J Appl Biomech. 2018;34(1):76–81.

    Article  PubMed  Google Scholar 

  46. Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech (Bristol, Avon). 2001;16(5):438–45. https://doi.org/10.1016/s0268-0033(01)00019-5.

    Article  CAS  Google Scholar 

  47. Nigg BM, Baltich J, Maurer C, Federolf P. Shoe midsole hardness, sex and age effects on lower extremity kinematics during running. J Biomech. 2012;45(9):1692–7. https://doi.org/10.1016/j.jbiomech.2012.03.027.

    Article  PubMed  Google Scholar 

  48. Phinyomark A, Hettinga BA, Osis ST, Ferber R. Gender and age-related differences in bilateral lower extremity mechanics during treadmill running. PLoS ONE. 2014;9(8): e105246. https://doi.org/10.1371/journal.pone.0105246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sakaguchi M, Ogawa H, Shimizu N, Kanehisa H, Yanai T, Kawakami Y. Gender differences in hip and ankle joint kinematics on knee abduction during running. Eur J Sport Sci. 2014;14(Suppl 1):S302–9. https://doi.org/10.1080/17461391.2012.693953.

    Article  PubMed  Google Scholar 

  50. Sinclair J, Greenhalgh A, Edmundson CJ, Brooks D, Hobbs SJ. Gender differences in the kinetics and kinematics of distance running: implications for footwear design. Int J Sports Sci Eng. 2012;6(2):118–28.

    Google Scholar 

  51. Willson JD, Petrowitz I, Butler RJ, Kernozek TW. Male and female gluteal muscle activity and lower extremity kinematics during running. Clin Biomech (Bristol, Avon). 2012;27(10):1052–7. https://doi.org/10.1016/j.clinbiomech.2012.08.008.

    Article  Google Scholar 

  52. Hale R. Factors important to women engaged in vigorous physical activity. Sports medicine. Philadelphia: WB Saunders; 1984. p. 250–69.

    Google Scholar 

  53. Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926–34.

    Article  PubMed  Google Scholar 

  54. Hungerford DS, Barry M. Biomechanics of the patellofemoral joint. Clin Orthop Relat Res. 1979;144:9–15.

    Google Scholar 

  55. Sinclair J, Taylor PJ. Sex differences in tibiocalcaneal kinematics. Hum Mov. 2014;15(2):105–9.

    Google Scholar 

  56. von Tscharner V, Goepfert B. Gender dependent EMGs of runners resolved by time/frequency and principal pattern analysis. J Electromyogr Kinesiol. 2003;13(3):253–72.

    Article  Google Scholar 

  57. DeMont RG, Lephart SM. Effect of sex on preactivation of the gastrocnemius and hamstring muscles. Br J Sports Med. 2004;38(2):120–4. https://doi.org/10.1136/bjsm.2002.000195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Baur H, Hirschmuller A, Cassel M, Muller S, Mayer F. Gender-specific neuromuscular activity of the M. peroneus longus in healthy runners—a descriptive laboratory study. Clin Biomech Bristol Avon. 2010;25(9):938–43. https://doi.org/10.1016/j.clinbiomech.2010.06.009.

    Article  Google Scholar 

  59. Santuz A, Janshen L, Bruell L, Munoz-Martel V, Taborri J, Rossi S, et al. Sex-specific tuning of modular muscle activation patterns for locomotion in young and older adults. bioRxiv. 2021.

  60. Isherwood J, Wang H, Sterzing T. Running biomechanics and running shoe perception of Chinese men and women. Footwear Sci. 2021;13(1):55–67.

    Article  Google Scholar 

  61. McGhee DE, Steele JR. Biomechanics of breast support for active women. Exerc Sport Sci Rev. 2020;48(3):99–109. https://doi.org/10.1249/JES.0000000000000221.

    Article  PubMed  Google Scholar 

  62. Brown N, Scurr J. Do women with smaller breasts perform better in long-distance running? Eur J Sport Sci. 2016;16(8):965–71.

    Article  PubMed  Google Scholar 

  63. Keller TS, Weisberger A, Ray J, Hasan S, Shiavi R, Spengler D. Relationship between vertical ground reaction force and speed during walking, slow jogging, and running. Clin Biomech (Bristol, Avon). 1996;11(5):253–9.

    Article  CAS  Google Scholar 

  64. Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Glaviano NR, Kew M, Hart JM, Saliba S. Demographic and epidemiological trends in patellofemoral pain. Int J Sports Phys Ther. 2015;10(3):281–90.

    PubMed  PubMed Central  Google Scholar 

  66. Boling M, Padua D, Marshall S, Guskiewicz K, Pyne S, Beutler A. Gender differences in the incidence and prevalence of patellofemoral pain syndrome. Scand J Med Sci Sports. 2010;20(5):725–30. https://doi.org/10.1111/j.1600-0838.2009.00996.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sinclair J, Selfe J. Sex differences in knee loading in recreational runners. J Biomech. 2015;48(10):2171–5. https://doi.org/10.1016/j.jbiomech.2015.05.016.

    Article  CAS  PubMed  Google Scholar 

  68. Willson JD, Loss JR, Willy RW, Meardon SA. Sex differences in running mechanics and patellofemoral joint kinetics following an exhaustive run. J Biomech. 2015;48(15):4155–9. https://doi.org/10.1016/j.jbiomech.2015.10.021.

    Article  PubMed  Google Scholar 

  69. Arampatzis A, Monte GD, Karamanidis K, Morey-Klapsing G, Stafilidis S, Brüggemann G-P. Influence of the muscle-tendon unit’s mechanical and morphological properties on running economy. J Exp Biol. 2006;209(17):3345–57. https://doi.org/10.1242/jeb.02340.

    Article  PubMed  Google Scholar 

  70. Kubo K, Miyazaki D, Shimoju S, Tsunoda N. Relationship between elastic properties of tendon structures and performance in long distance runners. Eur J Appl Physiol. 2015;115(8):1725–33.

    Article  PubMed  Google Scholar 

  71. Kubo K, Tabata T, Ikebukuro T, Igarashi K, Yata H, Tsunoda N. Effects of mechanical properties of muscle and tendon on performance in long distance runners. Eur J Appl Physiol. 2010;110(3):507–14. https://doi.org/10.1007/s00421-010-1528-1.

    Article  PubMed  Google Scholar 

  72. Fletcher JR, MacIntosh BR. Changes in Achilles tendon stiffness and energy cost following a prolonged run in trained distance runners. PLoS ONE. 2018;13(8):e0202026. https://doi.org/10.1371/journal.pone.0202026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fletcher JR, Pfister TR, Macintosh BR. Energy cost of running and Achilles tendon stiffness in man and woman trained runners. Physiol Rep. 2013;1(7):e00178. https://doi.org/10.1002/phy2.178.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hansen M. Female hormones: do they influence muscle and tendon protein metabolism? Proc Nutr Soc. 2018;77(1):32–41.

    Article  CAS  PubMed  Google Scholar 

  75. Westh E, Kongsgaard M, Bojsen-Moller J, Aagaard P, Hansen M, Kjaer M, et al. Effect of habitual exercise on the structural and mechanical properties of human tendon, in vivo, in men and women. Scand J Med Sci Sports. 2008;18(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  76. Sano K, Nicol C, Akiyama M, Kunimasa Y, Oda T, Ito A, et al. Can measures of muscle–tendon interaction improve our understanding of the superiority of Kenyan endurance runners? Eur J Appl Physiol. 2015;115(4):849–59.

    Article  PubMed  Google Scholar 

  77. Lee H, Petrofsky JS, Laymon M, Yim J. A greater reduction of anterior cruciate ligament elasticity in women compared to men as a result of delayed onset muscle soreness. Tohoku J Exp Med. 2013;231(2):111–5.

    Article  PubMed  Google Scholar 

  78. Shultz SJ, Sander T, Kirk S, Perrin D. Sex differences in knee joint laxity change across the female menstrual cycle. J Sports Med Phys Fit. 2005;45(4):594.

    CAS  Google Scholar 

  79. Balachandar V, Marciniak JL, Wall O, Balachandar C. Effects of the menstrual cycle on lower-limb biomechanics, neuromuscular control, and anterior cruciate ligament injury risk: a systematic review. Muscles Ligaments Tendons J. 2017;7(1):136–46. https://doi.org/10.11138/mltj/2017.7.1.136.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Khowailed IA, Petrofsky J, Lohman E, Daher N, Mohamed O. 17beta-estradiol induced effects on anterior cruciate ligament laxness and neuromuscular activation patterns in female runners. J Womens Health (Larchmt). 2015;24(8):670–80. https://doi.org/10.1089/jwh.2014.5184.

    Article  Google Scholar 

  81. Boisseau N, Duclos M, Guinot M. La femme sportive. Sciences et pratiques du sport. 2009.

  82. Isacco L, Boisseau N. Sex hormones and substrate metabolism during endurance exercise. In: Hackney AC, editor. Sex hormones, exercise and women: scientific and clinical aspects. Cham: Springer International Publishing; 2017. p. 35–58.

    Chapter  Google Scholar 

  83. Lundsgaard A-M, Kiens B. Gender differences in skeletal muscle substrate metabolism—molecular mechanisms and insulin sensitivity. Front Endocrinol. 2014;5:195. https://doi.org/10.3389/fendo.2014.00195.

    Article  Google Scholar 

  84. Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR. Gender differences in substrate for endurance exercise. J Appl Physiol (1985). 1990;68(1):302–8. https://doi.org/10.1152/jappl.1990.68.1.302.

    Article  CAS  Google Scholar 

  85. Tarnopolsky MA. Gender differences in substrate metabolism during endurance exercise. Can J Appl Physiol. 2000;25(4):312–27. https://doi.org/10.1139/h00-024.

    Article  CAS  PubMed  Google Scholar 

  86. Tarnopolsky MA. Sex differences in exercise metabolism and the role of 17-beta estradiol. Med Sci Sports Exerc. 2008;40(4):648–54. https://doi.org/10.1249/MSS.0b013e31816212ff.

    Article  CAS  PubMed  Google Scholar 

  87. Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol (1985). 2005;98(1):160–7. https://doi.org/10.1152/japplphysiol.00662.2003.

    Article  Google Scholar 

  88. Lamont LS, McCullough AJ, Kalhan SC. Gender differences in leucine, but not lysine, kinetics. J Appl Physiol (1985). 2001;91(1):357–62. https://doi.org/10.1152/jappl.2001.91.1.357.

    Article  CAS  Google Scholar 

  89. Lamont LS, McCullough AJ, Kalhan SC. Gender differences in the regulation of amino acid metabolism. J Appl Physiol (1985). 2003;95(3):1259–65. https://doi.org/10.1152/japplphysiol.01028.2002.

    Article  CAS  Google Scholar 

  90. van Gent RN, Siem D, van Middelkoop M, van Os AG, Bierma-Zeinstra SMA, Koes BW. Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. Br J Sports Med. 2007;41(8):469–80. https://doi.org/10.1136/bjsm.2006.033548 (discussion 80).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Constantini NW, Dubnov G, Lebrun CM. The menstrual cycle and sport performance. Clin Sports Med. 2005;24(2):e51-82. https://doi.org/10.1016/j.csm.2005.01.003 (xiii–xiv).

    Article  PubMed  Google Scholar 

  92. D’Eon TM, Sharoff C, Chipkin SR, Grow D, Ruby BC, Braun B. Regulation of exercise carbohydrate metabolism by estrogen and progesterone in women. Am J Physiol Endocrinol Metab. 2002;283(5):E1046–55. https://doi.org/10.1152/ajpendo.00271.2002.

    Article  CAS  PubMed  Google Scholar 

  93. Ruby BC, Robergs RA, Waters DL, Burge M, Mermier C, Stolarczyk L. Effects of estradiol on substrate turnover during exercise in amenorrheic females. Med Sci Sports Exerc. 1997;29(9):1160–9. https://doi.org/10.1097/00005768-199709000-00007.

    Article  CAS  PubMed  Google Scholar 

  94. Hackney AC, McCracken-Compton MA, Ainsworth B. Substrate responses to submaximal exercise in the midfollicular and midluteal phases of the menstrual cycle. Int J Sport Nutr Exerc Metab. 1994;4(3):299–308. https://doi.org/10.1123/ijsn.4.3.299.

    Article  CAS  Google Scholar 

  95. Hackney AC, Muoio D, Meyer WR. The Effect of sex steroid hormones on substrate oxidation during prolonged submaximal exercise in women. Jpn J Physiol. 2000;50(5):489–94. https://doi.org/10.2170/jjphysiol.50.489.

    Article  CAS  PubMed  Google Scholar 

  96. Kanaley JA, Boileau RA, Bahr JA, Misner JE, Nelson RA. Substrate oxidation and GH responses to exercise are independent of menstrual phase and status. Med Sci Sports Exerc. 1992;24(8):873–80.

    Article  CAS  PubMed  Google Scholar 

  97. Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol. 2007;292(3):R1271–8. https://doi.org/10.1152/ajpregu.00472.2006.

    Article  CAS  PubMed  Google Scholar 

  98. Fisher G, Windham ST, Griffin P, Warren JL, Gower BA, Hunter GR. Associations of human skeletal muscle fiber type and insulin sensitivity, blood lipids, and vascular hemodynamics in a cohort of premenopausal women. Eur J Appl Physiol. 2017;117(7):1413–22. https://doi.org/10.1007/s00421-017-3634-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Essén B, Jansson E, Henriksson J, Taylor AW, Saltin B. Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol Scand. 1975;95(2):153–65. https://doi.org/10.1111/j.1748-1716.1975.tb10038.x.

    Article  PubMed  Google Scholar 

  100. Roepstorff C, Donsmark M, Thiele M, Vistisen B, Stewart G, Vissing K, et al. Sex differences in hormone-sensitive lipase expression, activity, and phosphorylation in skeletal muscle at rest and during exercise. Am J Physiol Endocrinol Metab. 2006;291(5):E1106–14. https://doi.org/10.1152/ajpendo.00097.2006.

    Article  CAS  PubMed  Google Scholar 

  101. Roepstorff C, Steffensen CH, Madsen M, Stallknecht B, Kanstrup I-L, Richter EA, et al. Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol Endocrinol Metab. 2002;282(2):E435–47. https://doi.org/10.1152/ajpendo.00266.2001.

    Article  CAS  PubMed  Google Scholar 

  102. Steffensen CH, Roepstorff C, Madsen M, Kiens B. Myocellular triacylglycerol breakdown in females but not in males during exercise. Am J Physiol Endocrinol Metab. 2002;282(3):E634–42. https://doi.org/10.1152/ajpendo.00078.2001.

    Article  CAS  PubMed  Google Scholar 

  103. Fletcher JR, MacIntosh BR. Running economy from a muscle energetics perspective. Front Physiol. 2017;2017:8. https://doi.org/10.3389/fphys.2017.00433.

    Article  Google Scholar 

  104. Moore IS. Is there an economical running technique? A review of modifiable biomechanical factors affecting running economy. Sports Med. 2016;46(6):793–807. https://doi.org/10.1007/s40279-016-0474-4.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fletcher JR, Esau SP, MacIntosh BR. Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol (1985). 2009;107(6):1918–22. https://doi.org/10.1152/japplphysiol.00307.2009.

    Article  Google Scholar 

  106. Vernillo G, Millet GP, Millet GY. Does the running economy really increase after ultra-marathons? Front Physiol. 2017. https://doi.org/10.3389/fphys.2017.00783.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J, Wolfe RR. Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol (1985). 2000;88(5):1707–14. https://doi.org/10.1152/jappl.2000.88.5.1707.

    Article  CAS  Google Scholar 

  108. Barnes KR, Mcguigan MR, Kilding AE. Lower-body determinants of running economy in male and female distance runners. J Strength Cond Res. 2014;28(5):1289–97. https://doi.org/10.1519/JSC.0000000000000267.

    Article  PubMed  Google Scholar 

  109. Black MI, Handsaker JC, Allen SJ, Forrester SE, Folland JP. Is there an optimal speed for economical running? Int J Sports Physiol Perform. 2018;13(1):75–81. https://doi.org/10.1123/ijspp.2017-0015.

    Article  PubMed  Google Scholar 

  110. Bransford DR, Howley ET. Oxygen cost of running in trained and untrained men and women. Med Sci Sports Exerc. 1977;9(1):41–4.

    Article  CAS  Google Scholar 

  111. Bunc V, Heller J. Energy cost of running in similarly trained men and women. Eur J Appl Physiol. 1989;59(3):178–83. https://doi.org/10.1007/BF02386184.

    Article  CAS  Google Scholar 

  112. Daniels J, Daniels N. Running economy of elite male and elite female runners. Med Sci Sports Exerc. 1992;24(4):483–9.

    Article  CAS  PubMed  Google Scholar 

  113. Fletcher JR, MacIntosh BR. Achilles tendon strain energy in distance running: consider the muscle energy cost. J Appl Physiol (1985). 2014;118(2):193–9. https://doi.org/10.1152/japplphysiol.00732.2014.

    Article  Google Scholar 

  114. Morgan DW, Craib M. Physiological aspects of running economy. Med Sci Sports Exerc. 1992;24(4):456–61.

    CAS  PubMed  Google Scholar 

  115. Helgerud J, Støren Ø, Hoff J. Are there differences in running economy at different velocities for well-trained distance runners? Eur J Appl Physiol. 2010;108(6):1099–105. https://doi.org/10.1007/s00421-009-1218-z.

    Article  PubMed  Google Scholar 

  116. Devries MC, Hamadeh MJ, Phillips SM, Tarnopolsky MA. Menstrual cycle phase and sex influence muscle glycogen utilization and glucose turnover during moderate-intensity endurance exercise. Am J Physiol Regul Integr Comp Physiol. 2006;291(4):R1120–8. https://doi.org/10.1152/ajpregu.00700.2005.

    Article  CAS  PubMed  Google Scholar 

  117. Mittendorfer B, Horowitz JF, Klein S. Gender differences in lipid and glucose kinetics during short-term fasting. Am J Physiol Regul Integr Comp Physiol. 2001;281(6):E1333–9. https://doi.org/10.1152/ajpendo.2001.281.6.E1333.

    Article  CAS  Google Scholar 

  118. Giacomoni M, Falgairette G. Decreased submaximal oxygen uptake during short duration oral contraceptive use: a randomized cross-over trial in premenopausal women. Ergonomics. 2000;43(10):1559–70. https://doi.org/10.1080/001401300750003989.

    Article  CAS  PubMed  Google Scholar 

  119. Dokumacı B, Hazır T. Effects of the menstrual cycle on running economy: oxygen cost versus caloric cost. Res Q Exercise Sport. 2019;90(3):318–26. https://doi.org/10.1080/02701367.2019.1599800.

    Article  Google Scholar 

  120. Goldsmith E, Glaister M. The effect of the menstrual cycle on running economy. J Sports Med Phys Fit. 2020;60(4):610–7. https://doi.org/10.23736/S0022-4707.20.10229-9.

    Article  CAS  Google Scholar 

  121. Williams TJ, Krahenbuhl GS. Menstrual cycle phase and running economy. Med Sci Sports Exerc. 1997;29(12):1609–18. https://doi.org/10.1097/00005768-199712000-00010.

    Article  CAS  PubMed  Google Scholar 

  122. Barry BK, Enoka RM. The neurobiology of muscle fatigue: 15 years later. Integr Comp Biol. 2007;47(4):465–73.

    Article  PubMed  Google Scholar 

  123. Giandolini M, Vernillo G, Samozino P, Horvais N, Edwards WB, Morin JB, et al. Fatigue associated with prolonged graded running. Eur J Appl Physiol. 2016;116(10):1859–73. https://doi.org/10.1007/s00421-016-3437-4.

    Article  PubMed  Google Scholar 

  124. Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons? Sports Med. 2011;41(6):489–506. https://doi.org/10.2165/11588760-000000000-00000.

    Article  PubMed  Google Scholar 

  125. Noakes TD. The central governor model of exercise regulation applied to the marathon. Sports Med. 2007;37(4–5):374–7. https://doi.org/10.2165/00007256-200737040-00026.

    Article  PubMed  Google Scholar 

  126. Thomas K, Elmeua M, Howatson G, Goodall S. Intensity-dependent contribution of neuromuscular fatigue after constant-load cycling. Med Sci Sports Exerc. 2016;48(9):1751–60. https://doi.org/10.1249/MSS.0000000000000950.

    Article  PubMed  Google Scholar 

  127. Bontemps B, Vercruyssen F, Gruet M, Louis J. Downhill running: what are the effects and how can we adapt? A narrative review. Sports Med. 2020;50(12):2083–110. https://doi.org/10.1007/s40279-020-01355-z.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol. 2014;210(4):768–89. https://doi.org/10.1111/apha.12234.

    Article  CAS  Google Scholar 

  129. Hunter SK. The relevance of sex differences in performance fatigability. Med Sci Sports Exerc. 2016;48(11):2247–56. https://doi.org/10.1249/MSS.0000000000000928.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Pincivero DM, Gandaio CM, Ito Y. Gender-specific knee extensor torque, flexor torque, and muscle fatigue responses during maximal effort contractions. Eur J Appl Physiol. 2003;89(2):134–41. https://doi.org/10.1007/s00421-002-0739-5.

    Article  PubMed  Google Scholar 

  131. Ehrstrom S, Tartaruga MP, Easthope CS, Brisswalter J, Morin JB, Vercruyssen F. Short trail running race: beyond the classic model for endurance running performance. Med Sci Sports Exerc. 2018;50(3):580–8. https://doi.org/10.1249/MSS.0000000000001467.

    Article  PubMed  Google Scholar 

  132. Ansdell P, Brownstein CG, Skarabot J, Hicks KM, Howatson G, Thomas K, et al. Sex differences in fatigability and recovery relative to the intensity–duration relationship. J Physiol. 2019;597(23):5577–95. https://doi.org/10.1113/JP278699.

    Article  CAS  PubMed  Google Scholar 

  133. Glace BW, McHugh MP, Gleim GW. Effects of a 2-hour run on metabolic economy and lower extremity strength in men and women. J Orthop Sports Phys Ther. 1998;27(3):189–96. https://doi.org/10.2519/jospt.1998.27.3.189.

    Article  CAS  PubMed  Google Scholar 

  134. Boccia G, Dardanello D, Tarperi C, Festa L, La Torre A, Pellegrini B, et al. Women show similar central and peripheral fatigue to men after half-marathon. Eur J Sport Sci. 2018. https://doi.org/10.1080/17461391.2018.1442500.

    Article  PubMed  Google Scholar 

  135. Macchi R, Vercruyssen F, Hays A, Aubert G, Exubis G, Chavet P, et al. Sex influence on the functional recovery pattern after a graded running race: original analysis to identify the recovery profiles. Front Physiol. 2021;12:311.

    Article  Google Scholar 

  136. Temesi J, Arnal PJ, Rupp T, Feasson L, Cartier R, Gergele L, et al. Are females more resistant to extreme neuromuscular fatigue? Med Sci Sports Exerc. 2015;47(7):1372–82. https://doi.org/10.1249/MSS.0000000000000540.

    Article  PubMed  Google Scholar 

  137. Besson T, Parent A, Brownstein CG, Espeit L, Lapole T, Martin V, et al. Sex differences in neuromuscular fatigue and changes in cost of running after mountain trail races of various distances. Med Sci Sports Exerc. 2021;53(11):2374–87. https://doi.org/10.1249/MSS.0000000000002719.

    Article  PubMed  Google Scholar 

  138. Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol. 1993;66(3):254–62. https://doi.org/10.1007/BF00235103.

    Article  CAS  PubMed  Google Scholar 

  139. Welle S, Tawil R, Thornton CA. Sex-related differences in gene expression in human skeletal muscle. PLoS ONE. 2008;3(1): e1385. https://doi.org/10.1371/journal.pone.0001385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ansdell P, Thomas K, Howatson G, Hunter S, Goodall S. Contraction intensity and sex differences in knee-extensor fatigability. J Electromyogr Kinesiol. 2017;37:68–74. https://doi.org/10.1016/j.jelekin.2017.09.003.

    Article  PubMed  Google Scholar 

  141. Trappe S, Gallagher P, Harber M, Carrithers J, Fluckey J, Trappe T. Single muscle fibre contractile properties in young and old men and women. J Physiol. 2003;552(Pt 1):47–58. https://doi.org/10.1113/jphysiol.2003.044966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Komi PV, Bosco C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med Sci Sports Exerc. 1978;10(4):261–5.

    CAS  Google Scholar 

  143. Parker BA, Smithmyer SL, Pelberg JA, Mishkin AD, Herr MD, Proctor DN. Sex differences in leg vasodilation during graded knee extensor exercise in young adults. J Appl Physiol (1985). 2007;103(5):1583–91. https://doi.org/10.1152/japplphysiol.00662.2007.

    Article  Google Scholar 

  144. Sundberg CW, Hunter SK, Bundle MW. Rates of performance loss and neuromuscular activity in men and women during cycling: evidence for a common metabolic basis of muscle fatigue. J Appl Physiol (1985). 2017;122(1):130–41. https://doi.org/10.1152/japplphysiol.00468.2016.

    Article  Google Scholar 

  145. Laurent C, Green J, Bishop P, Sjökvist J, Schumacker R, Richardson M, et al. Effect of gender on fatigue and recovery following maximal intensity repeated sprint performance. J Sports Med Phys Fit. 2010;50(3):243–53.

    CAS  Google Scholar 

  146. Warhol MJ, Siegel AJ, Evans WJ, Silverman LM. Skeletal muscle injury and repair in marathon runners after competition. Am J Clin Pathol. 1985;118(2):331–9.

    CAS  Google Scholar 

  147. Paulsen G, Mikkelsen UR, Raastad T, Peake JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev. 2012;2012(18):42–97.

    Google Scholar 

  148. Nicol C, Avela J, Komi PV. The stretch-shortening cycle: a model to study naturally occurring neuromuscular fatigue. Sports Med. 2006;36(11):977–99. https://doi.org/10.2165/00007256-200636110-00004.

    Article  PubMed  Google Scholar 

  149. Nicol C, Komi PV. Stretch-shortening cycle fatigue. Neuromuscular aspects of sport performance. New York: Wiley; 2010. p. 183–215.

    Book  Google Scholar 

  150. Evans WJ, Meredith CN, Cannon JG, Dinarello CA, Frontera WR, Hughes VA, et al. Metabolic changes following eccentric exercise in trained and untrained men. J Appl Physiol (1985). 1986;61(5):1864–8. https://doi.org/10.1152/jappl.1986.61.5.1864.

    Article  CAS  Google Scholar 

  151. Siegel A, Silerman L, Lopez R. Creatine kinase elevations in marathon runners: relationship to training and competition. Yale J Biol Med. 1980;53(4):275–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Newham DJ, Mills KR, Quigley BM, Edwards RH. Pain and fatigue after concentric and eccentric muscle contractions. Clin Sci (Lond). 1983;64(1):55–62.

    Article  CAS  Google Scholar 

  153. Howell JN, Chleboun G, Conatser R. Muscle stiffness, strength loss, swelling and soreness following exercise-induced injury in humans. J Physiol. 1993;464:183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stupka N, Lowther S, Chorneyko K, Bourgeois J, Hogben C, Tarnopolsky M. Gender differences in muscle inflammation after eccentric exercise. J Appl Physiol (1985). 2000;89(6):2325–32.

    Article  CAS  Google Scholar 

  155. Sorichter S, Puschendorf B, Mair J. Skeletal muscle injury induced by eccentric muscle action: muscle proteins as markers of muscle fiber injury. Exerc Immunol Rev. 1999;1999(5):5–21.

    Google Scholar 

  156. Silva RP, Vilaça A, Guerra FD, Mundim AV, De Agostini GG, De Abreu LC, et al. Sex differences in physiological stress induced by a long-lasting adventure race: a prospective observational analytical study. Sportverletz Sportschaden. 2020;34(02):84–95.

    Article  PubMed  Google Scholar 

  157. Goodman C, Henry G, Dawson B, Gillam I, Beilby J, Ching S, et al. Biochemical and ultrastructural indices of muscle damage after a twenty-one kilometre run. Aust J Sci Med Sport. 1997;29(4):95–8.

    CAS  PubMed  Google Scholar 

  158. Margaritis I, Tessier F, Richard M-J, Marconnet P. No evidence of oxidative stress after a triathlon race in highly trained competitors. Int J Sports Med. 1997;18(3):186–90.

    Article  CAS  PubMed  Google Scholar 

  159. Hoffman MD, Ingwerson JL, Rogers IR, Hew-Butler T, Stuempfle KJ. Increasing creatine kinase concentrations at the 161-km Western States Endurance Run. Wilderness Environ Med. 2012;23(1):56–60. https://doi.org/10.1016/j.wem.2011.11.001.

    Article  PubMed  Google Scholar 

  160. Fridén J, Lieber RL. Serum creatine kinase level is a poor predictor of muscle function after injury. Scand J Med Sci Sports. 2001;11(2):126–7. https://doi.org/10.1034/j.1600-0838.2001.011002126.x.

    Article  PubMed  Google Scholar 

  161. Mougios V. Reference intervals for serum creatine kinase in athletes. Br J Sports Med. 2007;41(10):674–8. https://doi.org/10.1136/bjsm.2006.034041.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Enns DL, Tiidus PM. The influence of estrogen on skeletal muscle: sex matters. Sports Med. 2010;40(1):41–58. https://doi.org/10.2165/11319760-000000000-00000.

    Article  PubMed  Google Scholar 

  163. Stachenfeld NS, Taylor HS. Challenges and methodology for testing young healthy women in physiological studies. Am J Physiol Endocrinol Metab. 2014;306(8):E849–53. https://doi.org/10.1152/ajpendo.00038.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kaikkonen J, Porkkala-Sarataho E, Tuomainen TP, Nyyssönen K, Kosonen L, Ristonmaa U, et al. Exhaustive exercise increases plasma/serum total oxidation resistance in moderately trained men and women, whereas their VLDL + LDL lipoprotein fraction is more susceptible to oxidation. Scand J Clin Lab Invest. 2002;62(8):599–607. https://doi.org/10.1080/003655102764654330.

    Article  CAS  PubMed  Google Scholar 

  165. Oosthuyse T, Bosch AN. The effect of gender and menstrual phase on serum creatine kinase activity and muscle soreness following downhill running. Antioxidants. 2017. https://doi.org/10.3390/antiox6010016.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Brueckner JC, Atchou G, Capelli C, Duvallet A, Barrault D, Jousselin E, et al. The energy cost of running increases with the distance covered. Eur J Appl Physiol. 1991;62(6):385–9. https://doi.org/10.1007/BF00626607.

    Article  CAS  Google Scholar 

  167. Hunter I, Smith GA. Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. Eur J Appl Physiol. 2007;100(6):653–61. https://doi.org/10.1007/s00421-007-0456-1.

    Article  PubMed  Google Scholar 

  168. Vercruyssen F, Gruet M, Colson SS, Ehrstrom S, Brisswalter J. Compression garments, muscle contractile function, and economy in trail runners. Int J Sports Physiol Perform. 2017;12(1):62–8. https://doi.org/10.1123/ijspp.2016-0035.

    Article  PubMed  Google Scholar 

  169. Vercruyssen F, Tartaruga M, Horvais N, Brisswalter J. Effects of footwear and fatigue on running economy and biomechanics in trail runners. Med Sci Sports Exerc. 2016;48(10):1976–84. https://doi.org/10.1249/MSS.0000000000000981.

    Article  PubMed  Google Scholar 

  170. Xu F, Montgomery DL. Effect of prolonged exercise at 65 and 80 % of VO2max on running economy. Int J Sports Med. 1995;16(5):309–13. https://doi.org/10.1055/s-2007-973011.

    Article  CAS  PubMed  Google Scholar 

  171. Loftin M, Sothern M, Tuuri G, Tompkins C, Koss C, Bonis M. Gender comparison of physiologic and perceptual responses in recreational marathon runners. Int J Sports Physiol Perform. 2009;4(3):307–16.

    Article  PubMed  Google Scholar 

  172. Thomas DQ, Fernhall B, Granat H. Changes in running economy during a 5-km run in trained men and women runners. J Strength Cond Res. 1999;13(2):162–7.

    Google Scholar 

  173. Giandolini M, Gimenez P, Millet GY, Morin J-B, Samozino P. Consequences of an ultra-trail on impact and lower limb kinematics in male and female runners. Footwear Sci. 2013;5(sup1):S14–5.

    Article  Google Scholar 

  174. Notley SR, Racinais S, Kenny GP. Do sex differences in thermoregulation pose a concern for female athletes preparing for the Tokyo Olympics? Br J Sports Med. 2021;55(6):298–9. https://doi.org/10.1136/bjsports-2020-102911.

    Article  PubMed  Google Scholar 

  175. Notley SR, Akerman AP, Meade RD, McGarr GW, Kenny GP. Exercise thermoregulation in prepubertal children: a brief methodological review. Med Sci Sports Exerc. 2020. https://doi.org/10.1249/MSS.0000000000002391.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Yanovich R, Ketko I, Charkoudian N. Sex differences in human thermoregulation: relevance for 2020 and beyond. Physiology (Bethesda). 2020;35(3):177–84. https://doi.org/10.1152/physiol.00035.2019.

    Article  CAS  Google Scholar 

  177. Periard JD, Racinais S, Timpka T, Dahlstrom O, Spreco A, Jacobsson J, et al. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF World Athletics Championships. Br J Sports Med. 2017;51(4):264–70. https://doi.org/10.1136/bjsports-2016-096579.

    Article  PubMed  Google Scholar 

  178. Gagnon D, Crandall CG, Kenny GP. Sex differences in postsynaptic sweating and cutaneous vasodilation. J Appl Physiol (1985). 2013;114(3):394–401. https://doi.org/10.1152/japplphysiol.00877.2012.

    Article  CAS  Google Scholar 

  179. Shapiro Y, Pandolf KB, Avellini BA, Pimental NA, Goldman RF. Physiological responses of men and women to humid and dry heat. J Appl Physiol Respir Environ Exerc Physiol. 1980;49(1):1–8. https://doi.org/10.1152/jappl.1980.49.1.1.

    Article  CAS  PubMed  Google Scholar 

  180. Wegelin JA, Hoffman MD. Variables associated with odds of finishing and finish time in a 161-km ultramarathon. Eur J Appl Physiol. 2011;111(1):145–53. https://doi.org/10.1007/s00421-010-1633-1.

    Article  PubMed  Google Scholar 

  181. Ely MR, Cheuvront SN, Roberts WO, Montain SJ. Impact of weather on marathon-running performance. Med Sci Sports Exerc. 2007;39(3):487–93. https://doi.org/10.1249/mss.0b013e31802d3aba.

    Article  PubMed  Google Scholar 

  182. Deaner RO, Carter RE, Joyner MJ, Hunter SK. Men are more likely than women to slow in the marathon. Med Sci Sports Exerc. 2015;47(3):607–16. https://doi.org/10.1249/MSS.0000000000000432.

    Article  PubMed  PubMed Central  Google Scholar 

  183. March DS, Vanderburgh PM, Titlebaum PJ, Hoops ML. Age, sex, and finish time as determinants of pacing in the marathon. J Strength Cond Res. 2011;25(2):386–91. https://doi.org/10.1519/JSC.0b013e3181bffd0f.

    Article  PubMed  Google Scholar 

  184. Cuk I, Nikolaidis PT, Knechtle B. Sex differences in pacing during half-marathon and marathon race. Res Sports Med. 2020;28(1):111–20. https://doi.org/10.1080/15438627.2019.1593835.

    Article  PubMed  Google Scholar 

  185. Deaner RO, Addona V, Carter RE, Joyner MJ, Hunter SK. Fast men slow more than fast women in a 10 kilometer road race. PeerJ. 2016;4:e2235. https://doi.org/10.7717/peerj.2235.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Deaner RO, Lowen A. Males and females pace differently in high school cross-country races. J Strength Cond Res. 2016;30(11):2991–7. https://doi.org/10.1519/JSC.0000000000001407.

    Article  PubMed  Google Scholar 

  187. Hanley B. Pacing, packing and sex-based differences in Olympic and IAAF World Championship marathons. J Sports Sci. 2016;34(17):1675–81. https://doi.org/10.1080/02640414.2015.1132841.

    Article  PubMed  Google Scholar 

  188. Trubee NW, Vanderburgh PM, Diestelkamp WS, Jackson KJ. Effects of heat stress and sex on pacing in marathon runners. J Strength Cond Res. 2014;28(6):1673–8. https://doi.org/10.1519/JSC.0000000000000295.

    Article  PubMed  Google Scholar 

  189. Renfree A, Crivoi do Carmo E, Martin L. The influence of performance level, age and gender on pacing strategy during a 100-km ultramarathon. Eur J Sport Sci. 2016;16(4):409–15. https://doi.org/10.1080/17461391.2015.1041061.

    Article  PubMed  Google Scholar 

  190. Bossi AH, Matta GG, Millet GY, Lima P, Pertence LC, de Lima JP, et al. Pacing strategy during 24-hour ultramarathon-distance running. Int J Sports Physiol Perform. 2017;12(5):590–6. https://doi.org/10.1123/ijspp.2016-0237.

    Article  PubMed  Google Scholar 

  191. Inoue A, Santos TM, Hettinga FJ, de Souza Alves D, Viana BF, de Souza Terra B, et al. The impact of sex and performance level on pacing behavior in a 24-h ultramarathon. In: Hurdling the Challenges of the 2019 IAAF World Championships. 2020

  192. Cuk I, Nikolaidis PT, Markovic S, Knechtle B. Age differences in pacing in endurance running: comparison between marathon and half-marathon men and women. Medicina (Kaunas). 2019. https://doi.org/10.3390/medicina55080479.

    Article  Google Scholar 

  193. Esculier JF, Willy RW, Baggaley MW, Meardon SA, Willson JD. Sex-specific kinetic and kinematic indicators of medial tibiofemoral force during walking and running. Knee. 2017;24(6):1317–25. https://doi.org/10.1016/j.knee.2017.08.054.

    Article  PubMed  Google Scholar 

  194. Hennig E. Gender differences for running in athletic footwear. In: Proceedings of the 5th Symposium on Footwear biomechanics, Zurich, Switzerland; 2001. p. 44–5.

Download references

Acknowledgements

The authors sincerely thank Callum Brownstein for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Y. Millet.

Ethics declarations

Author contributions

TB, RM, CN, FV and GYM drafted the manuscript; JR, CM and YK provided additional comments and contributions; all authors approved the final version.

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Thibault Besson, Robin Macchi, Jérémy Rossi, Cédric Morio, Yoko Kunimasa, Caroline Nicol, Fabrice Vercruyssen and Guillaume Millet declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besson, T., Macchi, R., Rossi, J. et al. Sex Differences in Endurance Running. Sports Med 52, 1235–1257 (2022). https://doi.org/10.1007/s40279-022-01651-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01651-w

Navigation