Skip to main content

Advertisement

Log in

Do Sex Differences in Physiology Confer a Female Advantage in Ultra-Endurance Sport?

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Ultra-endurance has been defined as any exercise bout that exceeds 6 h. A number of exceptional, record-breaking performances by female athletes in ultra-endurance sport have roused speculation that they might be predisposed to success in such events. Indeed, while the male-to-female performance gap in traditional endurance sport (e.g., marathon) remains at ~ 10%, the disparity in ultra-endurance competition has been reported as low as 4% despite the markedly lower number of female participants. Moreover, females generally outperform males in extreme-distance swimming. The issue is complex, however, with many sports-specific considerations and caveats. This review summarizes the sex-based differences in physiological functions and draws attention to those which likely determine success in extreme exercise endeavors. The aim is to provide a balanced discussion of the female versus male predisposition to ultra-endurance sport. Herein, we discuss sex-based differences in muscle morphology and fatigability, respiratory-neuromechanical function, substrate utilization, oxygen utilization, gastrointestinal structure and function, and hormonal control. The literature indicates that while females exhibit numerous phenotypes that would be expected to confer an advantage in ultra-endurance competition (e.g., greater fatigue resistance, greater substrate efficiency, and lower energetic demands), they also exhibit several characteristics that unequivocally impinge on performance (e.g., lower O2-carrying capacity, increased prevalence of GI distress, and sex-hormone effects on cellular function/injury risk). Crucially, the advantageous traits may only manifest as ergogenic in the extreme endurance events which, paradoxically, are those that females less often contest. The title question should be revisited in the coming years, when/if the number of female participants increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Whipp BJ, Ward SA. Will women soon outrun men? Nature. 1992;355:25. https://doi.org/10.1038/355025a0.

    Article  CAS  PubMed  Google Scholar 

  2. Zingg MA, Rüst CA, Rosemann T, Lepers R, Knechtle B. Analysis of sex differences in open-water ultra-distance swimming performances in the FINA World Cup races in 5 km, 10 km and 25 km from 2000 to 2012. BMC Sports Sci Med Rehabil 2014;6(7). https://doi.org/10.1186/2052-1847-6-7

  3. Reinboud W. Linear models can’t keep up with sport gender gap. Nature. 2004;432:147. https://doi.org/10.1038/432147a.

    Article  CAS  PubMed  Google Scholar 

  4. Péronnet F, Thibault G. Mathematical analysis of running performance and world running records. J Appl Physiol. 1989;67(1):453–65. https://doi.org/10.1152/jappl.1989.67.1.453

    Article  CAS  Google Scholar 

  5. Deaner RO, Carter RE, Joyner MJ, Hunter SK. Men are more likely than women to slow in the marathon. Med Sci Sports Exerc. 2014;47(3):607–616. https://doi.org/10.1249/MSS.0000000000000432

    Article  Google Scholar 

  6. Zaryski C, Smith DJ. Training principles and issues for ultra-endurance athletes. Curr Sports Med Rep. 2005;4(3):165–70. https://doi.org/10.1097/01.CSMR.0000306201.49315.73.

    Article  PubMed  Google Scholar 

  7. Hoffman MD, Ong JC, Wang G. Historical analysis of participation in 161km ultramarathons in North America. Int J Hist Sport. 2010;27(11):1877–91. https://doi.org/10.1080/09523367.2010.494385.

    Article  PubMed  Google Scholar 

  8. Scheer V. Participation trends of ultra endurance events. Sports Med Arthroscop Rev. 2019;27(1):3–7. https://doi.org/10.1097/JSA.0000000000000198.

    Article  Google Scholar 

  9. Millet GY, Banfi JC, Kerherve H, Morin JB, Vincent L, Estrade C, et al. Physiological and biological factors associated with a 24 h treadmill ultra-marathon performance. Scand J Med Sci Sports. 2011;21(1):54–61. https://doi.org/10.1111/j.1600-0838.2009.01001.x

    Article  CAS  Google Scholar 

  10. Millet GY, Hoffman MD, Morin JB. Sacrificing economy to improve running performance—a reality in the ultramarathon? J Appl Physiol. 2012;113(3):507–9. https://doi.org/10.1152/japplphysiol.00016.2012.

    Article  CAS  PubMed  Google Scholar 

  11. Hoffman MD, Lee J, Zhao H, Tsodikov A. Pain perception after running a 100-mile ultramarathon. Arch Phys Med Rehabil. 2007;88(8):1042–1048. https://doi.org/10.1016/j.apmr.2007.05.004

    Article  Google Scholar 

  12. Tiller NB, Roberts JD, Beasley L, Chapman S, Pinto JM, Smith L, et al. International Society of Sports Nutrition Position Stand: nutritional considerations for single-stage ultra-marathon training and racing. J Int Soc Sports Nut. 2019;16(50):1–23. https://doi.org/10.1186/s12970-019-0312-9

    Article  Google Scholar 

  13. Knechtle B, Nikolaidis PT. Physiology and pathophysiology in ultra-marathon running. Front Physiol. 2018;9:634. https://doi.org/10.3389/fphys.2018.00634.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cona G, Cavazzana A, Paoli A, Marcolin G, Grainer A, Bisiacchi PS. It’s a matter of mind! Cognitive functioning predicts the athletic performance in ultra-marathon runners. PLoS ONE. 2015;10(7):e0132943. https://doi.org/10.1371/journal.pone.0132943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thompson M. Physiological and biomechanical mechanisms of distance specific human running performance. Integr Comp Biol. 2017;57(2):293–300. https://doi.org/10.1093/icb/icx069

    Article  CAS  Google Scholar 

  16. Tiller NB. Pulmonary and respiratory muscle function in response to marathon and ultra-marathon running: a review. Sports Med. 2019;49(7):1031–41. https://doi.org/10.1007/s40279-019-01105-w.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tiller NB, Stewart GM, Illidi CR, Levine BD. Exercise is medicine? The cardiorespiratory implications of ultra-marathon. Curr Sports Med Rep. 2020;19(8):290–7. https://doi.org/10.1249/JSR.0000000000000738.

    Article  PubMed  Google Scholar 

  18. Knechtle B, Valeri F, Nikolaidis PT, Zingg MA, Rosemann T, Rüst CA. Do women reduce the gap to men in ultra-marathon running? SpringerPlus. 2016;5(1):672. https://doi.org/10.1186/s40064-016-2326-y.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Knechtle B, Abou S, Knechtle R, Rosemann T, Lepers R. Participation and performance trends in ultracycling. Open Access J Sports Med. 2013;4:41–51. https://doi.org/10.2147/OAJSM.S40142.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Knechtle B, di Gangi S, Rüst CA, Nikolaidis PT. Performance differences between the sexes in the Boston marathon from 1972 to 2017. J Strength Cond Res. 2020;34(2):566–76. https://doi.org/10.1519/JSC.0000000000002760.

    Article  Google Scholar 

  21. Waldvogel KJ, Nikolaidis PT, di Gangi S, Rosemann T, Knechtle B. Women reduce the performance difference to men with increasing age in ultra-marathon running. Int J Environ Res Public Health. 2019;16(13):2377. https://doi.org/10.3390/ijerph16132377.

    Article  PubMed Central  Google Scholar 

  22. Baumgartner S, Victor Sousa C, Nikolaidis PT, Knechtle B. Can the performance gap between women and men be reduced in ultra-cycling? Int J Environ Res Public Health. 2020;17(7):2521. https://doi.org/10.3390/ijerph17072521.

    Article  PubMed Central  Google Scholar 

  23. Bam J, Noakes TD, Juritz J, Dennis SC. Could women outrun men in ultramarathon races? Med Sci Sports Exerc. 1997;29(2):244–7. https://doi.org/10.1097/00005768-199702000-00013.

    Article  CAS  PubMed  Google Scholar 

  24. Peter L, Rust CA, Knechtle B, Rosemann T, Lepers R, Peter L, et al. Sex differences in 24-hour ultra-marathon performance—a retrospective data analysis from 1977 to 2012. Clinics. 2014;69(1):38–46. https://doi.org/10.6061/clinics/2014(01)06.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Senefeld J, Smith C, Hunter SK. Sex differences in participation, performance, and age of ultramarathon runners. Int J Sports Physiol Perform. 2016;11(7):635–42. https://doi.org/10.1123/ijspp.2015-0418.

    Article  PubMed  Google Scholar 

  26. Williams S. Are women better ultra-endurance athletes than men? BBC World News. 2019. https://www.bbc.co.uk/news/world-49284389

  27. Carter K. ‘Women have less ego. Men think: How hard can this be?’: the female ultra-athletes leading the field. The Guardian. 2020. https://www.theguardian.com/lifeandstyle/2020/jan/03/female-ultra-athletes-leading-field-women-less-ego

  28. Why women are better at ultra running. Women’s Running. 2016. https://www.womensrunning.co.uk/inspiration/why-women-are-better-at-ultrarunning

  29. Brueck H. Women are faster long-distance runners than men, and it’s probably because they’ve got more estrogen. Insider. 2020. https://www.insider.com/women-are-faster-long-distance-runners-estrogen-2020-1

  30. Jhung L. Why women rule. Runner’s World. 2010. https://www.runnersworld.com/trail-running/a20803612/why-women-rule-ultrarunning/

  31. Bloom B. Could women run faster than men? The Telegraph. 2020. https://www.telegraph.co.uk/athletics/2020/07/29/could-women-run-faster-men-science-says-might-possible/

  32. Loudin A. More women gain ground in ultramarathons, other long-distance races. The Washington Post. 2020. https://www.washingtonpost.com/health/women-long-distance-runners/2020/09/25/bffdda10-1871-11ea-a659-7d69641c6ff7_story

  33. Cheuvront SN, Carter R, Deruisseau KC, Moffatt RJ. Running performance differences between men and women: an update. Sports Med. 2005;35(12):1017–24. https://doi.org/10.2165/00007256-200535120-00002.

    Article  PubMed  Google Scholar 

  34. Kuscsik N. The history of women’s participation in the marathon. Ann NY Acad Sci. 1977;301(1):862–76. https://doi.org/10.1111/j.1749-6632.1977.tb38253.x.

    Article  Google Scholar 

  35. Coast JR, Blevins JS, Wilson BA. Do gender differences in running performance disappear with distance? Can J Appl Physiol. 2004;29(2):139–45. https://doi.org/10.1139/h04-010.

    Article  PubMed  Google Scholar 

  36. Lepers R. Sex difference in triathlon performance. Front Physiol. 2019;10:973. https://doi.org/10.3389/fphys.2019.00973.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zingg MA, Karner-Rezek K, Rosemann T, Knechtle B, Lepers R, Rüst CA. Will women outrun men in ultra-marathon road races from 50 km to 1000 km? SpringerPlus. 2014;3:97. https://doi.org/10.1186/2193-1801-3-97.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vickers AJ, Vertosick EA. An empirical study of race times in recreational endurance runners. BMC Sports Sci Med Rehabil. 2016;8:26. https://doi.org/10.1186/s13102-016-0052-y.

    Article  Google Scholar 

  39. Zingg M, Knechtle B, Rosemann T, Rüst C. Performance differences between sexes in 50-mile to 3,100-mile ultramarathons. Open Access J Sports Med. 2015;6:7–21. https://doi.org/10.2147/OAJSM.S76490.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hoffman MD. Ultramarathon trail running comparison of performance-matched men and women. Med Sci Sports Exerc. 2008;40(9):1681–6. https://doi.org/10.1249/MSS.0b013e318177eb63.

    Article  PubMed  Google Scholar 

  41. Speechly DP, Taylor SR, Rogers GG. Differences in ultra-endurance exercise in performance-matched male and female runners. Med Sci Sports Exerc. 1996;28(3):359–65. https://doi.org/10.1097/00005768-199603000-00011.

    Article  CAS  PubMed  Google Scholar 

  42. Ronto P. The state of ultra running 2020. RunRepeat. 2020. https://runrepeat.com/state-of-ultra-running

  43. Knechtle B, Rosemann T, Lepers R, Rüst CA. Women outperform men in ultradistance swimming: The Manhattan Island Marathon Swim from 1983 to 2013. Int J Sports Physiol Perform. 2014;9(6):913–24. https://doi.org/10.1123/ijspp.2013-0375.

    Article  PubMed  Google Scholar 

  44. Knechtle B, Dalamitros AA, Barbosa TM, Sousa CV, Rosemann T, Nikolaidis PT. Sex differences in swimming disciplines—can women outperform men in swimming? Int J Environ Res Public Health. 2020;17(10):3651. https://doi.org/10.3390/ijerph17103651.

    Article  PubMed Central  Google Scholar 

  45. Sex & gender. National Institutes of Health: Office of Research on Women’s Health. https://orwh.od.nih.gov/sex-gender

  46. Integrating sex & gender in health research. Canadian Institutes of Health Research. https://cihr-irsc.gc.ca/e/49347.html

  47. Heidari S, Babor TF, de Castro P, Tort S, Curno M. Sex and gender equity in research: rationale for the SAGER guidelines and recommended use. Res Integrity Peer Rev. 2016;1:2. https://doi.org/10.1186/s41073-016-0007-6.

    Article  Google Scholar 

  48. Phillips SP. Defining and measuring gender: a social determinant of health whose time has come. Int J Equity Health. 2005;4:11. https://doi.org/10.1186/1475-9276-4-11.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Clayton JA, Tannenbaum C. Reporting sex, gender, or both in clinical research? JAMA. 2016;316(18):1863–4. https://doi.org/10.1001/jama.2016.16405.

    Article  PubMed  Google Scholar 

  50. Enoka RM, Duchateau J. Translating fatigue to human performance. Med Sci Sports Exerc. 2016;48(11):2228–38. https://doi.org/10.1249/MSS.0000000000000929.

    Article  Google Scholar 

  51. Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons? The flush model. Sports Med. 2011;41(6):489–506. https://doi.org/10.2165/11588760-000000000-00000.

    Article  PubMed  Google Scholar 

  52. Hunter SK. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol. 2014;210(4):768–89. https://doi.org/10.1111/apha.12234.

    Article  CAS  Google Scholar 

  53. Hicks AL, Kent-Braun J, Ditor DS. Sex differences in human skeletal muscle fatigue. Exerc. Sport Sci Rev. 2001;29(3):109–12. https://doi.org/10.1097/00003677-200107000-00004.

    Article  CAS  Google Scholar 

  54. Martin V, Kerhervé H, Messonnier LA, Banfi JC, Geyssant A, Bonnefoy R, et al. Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J Appl Physiol. 2010;108(5):1224–33. https://doi.org/10.1152/japplphysiol.01202.2009.

    Article  PubMed  Google Scholar 

  55. Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, et al. Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS One. 2011;6(2):e17059. https://doi.org/10.1371/journal.pone.0017059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Millet GY, Millet GP, Lattier G, Maffiuletti NA, Candau R. Alteration of neuromuscular function after a prolonged road cycling race. Int J Sports Med. 2003;24(3):190–4. https://doi.org/10.1055/s-2003-39088.

    Article  CAS  PubMed  Google Scholar 

  57. Temesi J, Arnal PJ, Rupp T, Féasson L, Cartier R, Gergelé L, et al. Are females more resistant to extreme neuromuscular fatigue? Med Sci Sports Exerc. 2015;47(7):1372–82. https://doi.org/10.1249/mss.0000000000000540.

    Article  Google Scholar 

  58. Brooke MH, Kaiser KK. Muscle fiber types: How many and what kind? Arch Neurol. 1970;23(4):369–79. https://doi.org/10.1001/archneur.1970.00480280083010.

    Article  CAS  PubMed  Google Scholar 

  59. Zierath JR, Hawley JA. Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol. 2004;2(10):e348. https://doi.org/10.1371/journal.pbio.0020348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, et al. Fiber type composition of the vastus lateralis muscle of young men and women. J Histochem Cytochem. 2000;48(5):623–9. https://doi.org/10.1177/002215540004800506.

    Article  CAS  PubMed  Google Scholar 

  61. Welle S, Tawil R, Thornton CA. Sex-related differences in gene expression in human skeletal muscle. PLoS ONE. 2008;3(1):e1385. https://doi.org/10.1371/journal.pone.0001385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Parker BA, Smithmyer SL, Pelberg JA, Mishkin AD, Herr MD, Proctor DN. Sex differences in leg vasodilation during graded knee extensor exercise in young adults. J Appl Physiol. 2007;103(5):1583–91. https://doi.org/10.1152/japplphysiol.00662.2007.

    Article  PubMed  Google Scholar 

  63. Roepstorff C, Thiele M, Hillig T, Pilegaard H, Richter EA, Wojtaszewski JFP, et al. Higher skeletal muscle α2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J Physiol. 2006;574(1):125–38. https://doi.org/10.1113/jphysiol.2006.108720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Miller AEJ, MacDougall JD, Tarnopolsky MA, Sale DG. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol. 1993;66(3):254–62. https://doi.org/10.1007/BF00235103.

    Article  CAS  PubMed  Google Scholar 

  65. Barnes WS. The relationship between maximum isometric strength and intramuscular circulatory occlusion. Ergonomics. 1980;23(4):351–7. https://doi.org/10.1080/00140138008924748.

    Article  CAS  PubMed  Google Scholar 

  66. Martin PG, Rattey J. Central fatigue explains sex differences in muscle fatigue and contralateral cross-over effects of maximal contractions. Eur J Physiol. 2007;454(6):957–69. https://doi.org/10.1007/s00424-007-0243-1.

    Article  CAS  Google Scholar 

  67. Russ DW, Kent-Braun JA. Sex differences in human skeletal muscle fatigue are eliminated under ischemic conditions. J Appl Physiol. 2003;94(6):2414–22. https://doi.org/10.1152/japplphysiol.01145.2002.

    Article  PubMed  Google Scholar 

  68. Millet GY, Martin V, Temesi J. The role of the nervous system in neuromuscular fatigue induced by ultra-endurance exercise. Appl Physiol Nutr Metab. 2018;43(11):1151–7. https://doi.org/10.1139/apnm-2018-0161.

    Article  PubMed  Google Scholar 

  69. Sato H, Ohashi J. Sex differences in static muscular endurance. J Hum Ergol. 1989;18(11):53-60.

    CAS  Google Scholar 

  70. Brownstein CG, Millet GY, Thomas K. Neuromuscular responses to fatiguing locomotor exercise. Acta Physiol. 2020. e13533.  https://doi.org/10.1111/apha.13533

    Article  Google Scholar 

  71. Rossman MJ, Venturelli M, Mcdaniel J, Amann M, Richardson RS. Muscle mass and peripheral fatigue: a potential role for afferent feedback? Acta Physiol. 2012;206(4):242–50. https://doi.org/10.1111/j.1748-1716.2012.02471.x.

    Article  CAS  PubMed  Google Scholar 

  72. O’Leary TJ, Saunders SC, McGuire SJ, Izard RM. Sex differences in neuromuscular fatigability in response to load carriage in the field in British Army recruits. J Sci Med Sport. 2018;21(6):591–5. https://doi.org/10.1016/j.jsams.2017.10.018.

    Article  PubMed  Google Scholar 

  73. Boccia G, Dardanello D, Tarperi C, Festa L, la Torre A, Pellegrini B, et al. Women show similar central and peripheral fatigue to men after half-marathon. Eur J Sport Sci. 2018;18(5):695–704. https://doi.org/10.1080/17461391.2018.1442500.

    Article  PubMed  Google Scholar 

  74. Glace BW, McHugh MP, Gleim GW. Effects of a 2-hour run on metabolic economy and lower extremity strength in men and women. J Orthop Sports Phys Ther. 1998;27(3):189–96. https://doi.org/10.2519/jospt.1998.27.3.189.

    Article  CAS  PubMed  Google Scholar 

  75. Romer LM, Polkey MI. Exercise-induced respiratory muscle fatigue: Implications for performance. J Appl Physiol. 2008;104(3):879–88. https://doi.org/10.1152/japplphysiol.01157.2007.

    Article  PubMed  Google Scholar 

  76. Taylor BJ, How SC, Romer LM. Exercise-induced abdominal muscle fatigue in healthy humans. J Appl Physiol. 2006;100(5):1554–62. https://doi.org/10.1152/japplphysiol.01389.2005.

    Article  PubMed  Google Scholar 

  77. Johnson BD, Babcock MA, Suman OE, Dempsey JA. Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol. 1993;460:385–405. https://doi.org/10.1113/jphysiol.1993.sp019477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tiller NB, Campbell IG, Romer LM. Influence of upper-body exercise on the fatigability of human respiratory muscles. Med Sci Sports Exerc. 2017;49(7):1461–72. https://doi.org/10.1249/MSS.0000000000001251.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gonzales JU, Scheuermann BW. Gender differences in the fatigability of the inspiratory muscles. Med Sci Sports Exerc. 2006;38(3):472–9. https://doi.org/10.1249/01.mss.0000189318.80061.fe.

    Article  PubMed  Google Scholar 

  80. Guenette JA, Romer LM, Querido JS, Chua R, Eves ND, Road JD, et al. Sex differences in exercise-induced diaphragmatic fatigue in endurance-trained athletes. J Appl Physiol. 2010;109(1):35–46. https://doi.org/10.1152/japplphysiol.01341.2009.

    Article  PubMed  Google Scholar 

  81. Mitchell RA, Schaeffer MR, Ramsook AH, Wilkie SS, Guenette JA. Sex differences in respiratory muscle activation patterns during high-intensity exercise in healthy humans. Respir Physiol Neurobiol. 2018;247:57–60. https://doi.org/10.1016/j.resp.2017.09.002.

    Article  PubMed  Google Scholar 

  82. Abraham KA, Feingold H, Fuller DD, Jenkins M, Mateika JH, Fregosi RF. Respiratory-related activation of human abdominal muscles during exercise. J Physiol. 2002;541(2):653–63. https://doi.org/10.1113/jphysiol.2001.013462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dominelli PB, Molgat-Seon Y, Bingham D, Swartz PM, Road JD, Foster GE, et al. Dysanapsis and the resistive work of breathing during exercise in healthy men and women. J Appl Physiol. 2015;119(10):1105–13. https://doi.org/10.1152/japplphysiol.00409.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sheel AW, Dominelli PB, Molgat-Seon Y. Revisiting dysanapsis: sex-based differences in airways and the mechanics of breathing during exercise. Exp Physiol. 2016;101(2):213–8. https://doi.org/10.1113/EP085366.

    Article  PubMed  Google Scholar 

  85. Dominelli PB, Render JN, Molgat-Seon Y, Foster GE, Romer LM, Sheel AW. Oxygen cost of exercise hyperpnoea is greater in women compared with men. J Physiol. 2015;593(8):1965–79. https://doi.org/10.1113/jphysiol.2014.285965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nikolaidis P, Ćuk I, Knechtle B. Pacing of women and men in half-marathon and marathon races. Medicina. 2019;55(1):14. https://doi.org/10.3390/medicina55010014.

    Article  PubMed Central  Google Scholar 

  87. March DS, Vanderburgh PM, Titlebaum PJ, Hoops ML. Age, sex, and finish time as determinants of pacing in the marathon. J Strength Cond Res. 2011;25(2):386–91. https://doi.org/10.1519/JSC.0b013e3181bffd0f.

    Article  Google Scholar 

  88. Renfree A, Crivoi do Carmo E, Martin L. The influence of performance level, age and gender on pacing strategy during a 100-km ultramarathon. Eur J Sport Sci. 2016;16(4):409–15. https://doi.org/10.1080/17461391.2015.1041061.

    Article  PubMed  Google Scholar 

  89. Deaner RO, Lowen A. Males and females pace differently in high school cross-country races. J Strength Cond Res. 2016;30(11):2991–7. https://doi.org/10.1519/JSC.0000000000001407.

    Article  Google Scholar 

  90. Hubble C, Zhao J. Gender differences in marathon pacing and performance prediction. J Sports Anal. 2016;2(1):19–36. https://doi.org/10.3233/JSA-150008.

    Article  Google Scholar 

  91. Deaner RO, Addona V, Hanley B. Risk taking runners slow more in the marathon. Front Psychol. 2019;10:333. https://doi.org/10.3389/fpsyg.2019.00333.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Goudriaan AE, Lapauw B, Ruige J, Feyen E, Kaufman J-M, Brand M, et al. The influence of high-normal testosterone levels on risk-taking in healthy males in a 1-week letrozole administration study. Psychoneuroendocrinology. 2010;35(9):1416–21. https://doi.org/10.1016/j.psyneuen.2010.04.005.

    Article  CAS  PubMed  Google Scholar 

  93. Waśkiewicz Z, Kápcińska B, Sadowska-Krȩpa E, Czuba M, Kempa K, Kimsa E, et al. Acute metabolic responses to a 24-h ultra-marathon race in male amateur runners. Eur J Appl Physiol. 2012;112(5):1679–88. https://doi.org/10.1007/s00421-011-2135-5.

    Article  CAS  PubMed  Google Scholar 

  94. Bergström J, Hultman E. Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature. 1966;210(5033):309–10. https://doi.org/10.1038/210309a0.

    Article  PubMed  Google Scholar 

  95. Monaco C, Whitfield J, Jain SS, Spriet LL, Bonen A, Holloway GP. Activation of AMPKα2 is not required for mitochondrial FAT/CD36 accumulation during exercise. PLoS ONE. 2015;10(5):e0126122. https://doi.org/10.1371/journal.pone.0126122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ibrahimi A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K, et al. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem. 1999;274(38):26761–6. https://doi.org/10.1074/jbc.274.38.26761.

    Article  CAS  PubMed  Google Scholar 

  97. Kiens B, Roepstorff C, Glatz JFC, Bonen A, Schjerling P, Knudsen J, et al. Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: Influence of physical activity and gender. J Appl Physiol. 2004;97(4):1209–18. https://doi.org/10.1152/japplphysiol.01278.2003.

    Article  CAS  PubMed  Google Scholar 

  98. Miotto PM, McGlory C, Holloway TM, Phillips SM, Holloway GP. Sex differences in mitochondrial respiratory function in human skeletal muscle. Am J Physiol: Regul Integr Comp Physiol. 2018;314(6):R909–15. https://doi.org/10.1152/ajpregu.00025.2018.

    Article  CAS  Google Scholar 

  99. Devries MC. Sex-based differences in endurance exercise muscle metabolism: impact on exercise and nutritional strategies to optimize health and performance in women. Exp Physiol. 2016;101(2):243–9. https://doi.org/10.1113/EP085369.

    Article  PubMed  Google Scholar 

  100. Melanson EL, Sharp TA, Seagle HM, Horton TJ, Donahoo WT, Grunwald GK, et al. Effect of exercise intensity on 24-h energy expenditure and nutrient oxidation. J Appl Physiol. 2002;92(3):1045–52. https://doi.org/10.1152/japplphysiol.00706.2001.

    Article  CAS  PubMed  Google Scholar 

  101. Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR. Gender differences in substrate for endurance exercise. J Appl Physiol. 1990;68(1):302–8. https://doi.org/10.1152/jappl.1990.68.1.302.

    Article  CAS  PubMed  Google Scholar 

  102. Chenevière X, Borrani F, Sangsue D, Gojanovic B, Malatesta D. Gender differences in whole-body fat oxidation kinetics during exercise. Appl Physiol Nutr Metab. 2011;36(1):88–95. https://doi.org/10.1139/H10-086.

    Article  CAS  PubMed  Google Scholar 

  103. Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol. 2005;98(1):160–7. https://doi.org/10.1152/japplphysiol.00662.2003.

    Article  PubMed  Google Scholar 

  104. Lundsgaard A, Kiens B. Gender differences in skeletal muscle substrate metabolism - molecular mechanisms and insulin sensitivity. Front Endocrinol. 2014;5:195. https://doi.org/10.3389/fendo.2014.00195.

    Article  Google Scholar 

  105. Jeukendrup AE, Jentjens RLPG, Moseley L. Nutritional considerations in triathlon. Sports Med. 2005;35(2):163–81. https://doi.org/10.2165/00007256-200535020-00005.

    Article  PubMed  Google Scholar 

  106. Civitarese AE, Hesselink MKC, Russell AP, Ravussin E, Schrauwen P. Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Physiol. Endocrinol Metab. 2005;289(6):E1023–9. https://doi.org/10.1152/ajpendo.00193.2005.

    Article  CAS  PubMed  Google Scholar 

  107. Henderson GC. Sexual dimorphism in the effects of exercise on metabolism of lipids to support resting metabolism. Front Endocrinol. 2014;5:162. https://doi.org/10.3389/fendo.2014.00162.

    Article  Google Scholar 

  108. Coyle EF. Physiological regulation of marathon performance. Sports Med. 2007;37(4–5):306–11. https://doi.org/10.2165/00007256-200737040-00009.

    Article  PubMed  Google Scholar 

  109. Tanaka H, Bassett DR, Swensen TC, Sampedro RM. Aerobic and anaerobic power characteristics of competitive cyclists in the United States cycling federation. Int J Sports Med. 1993;14(6):334–8. https://doi.org/10.1055/s-2007-1021188.

    Article  CAS  PubMed  Google Scholar 

  110. Emerick P, Teed K, Rusk G, Fernhall B. Predictors of marathon performance in female runners. Sports Med Train Rehabil. 1997;8(1):23–36. https://doi.org/10.1080/15438629709512517.

    Article  Google Scholar 

  111. Maughan RJ, Leiper JB. Aerobic capacity and fractional utilisation of aerobic capacity in elite and non-elite male and female marathon runners. Eur J Appl Physiol Occup Physiol. 1983;52(1):80–7. https://doi.org/10.1007/BF00429030.

    Article  CAS  PubMed  Google Scholar 

  112. Loe H, Rognmo Ø, Saltin B, Wisløff U. Aerobic capacity reference data in 3816 healthy men and women 20–90 years. PLoS ONE. 2013;8(5):e64319. https://doi.org/10.1371/journal.pone.0064319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Calbet JAL, Joyner MJ. Disparity in regional and systemic circulatory capacities: do they affect the regulation of the circulation? Acta Physiolog. 2010;199(4):393–406. https://doi.org/10.1111/j.1748-1716.2010.02125.x.

    Article  CAS  PubMed  Google Scholar 

  114. Astrand P. Human physical fitness with special reference to sex and age from the department of physiology. Physiol Rev. 1956;36(3):307–35. https://doi.org/10.1152/physrev.1956.36.3.307.

    Article  CAS  PubMed  Google Scholar 

  115. Cureton KJ, Bishop P, Cureton K, Bishop P, Hutchinson P, Newland H, et al. Sex difference in maximal oxygen uptake: effect of equating haemoglobin concentration. Eur J Appl Phys Occup Physol. 1986;54(6):656–60. https://doi.org/10.1007/BF00943356.

    Article  CAS  Google Scholar 

  116. Barun Sharma H, Kailashiya J. Gender difference in aerobic capacity and the contribution by body composition and haemoglobin concentration: a study in young indian national hockey players. J Clin Diagnost Res. 2016;10(11):CC09–CC13. https://doi.org/10.7860/JCDR/2016/20873.8831.

    Article  Google Scholar 

  117. Cardinale DA, Larsen FJ, Schiffer TA, Morales-Alamo D, Ekblom B, Calbet JAL, et al. Superior intrinsic mitochondrial respiration in women than in men. Front Physiol. 2018;9:1133. https://doi.org/10.3389/fphys.2018.01133.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Torres MJ, Kew KA, Ryan TE, Pennington ER, Lin CT, Buddo KA, et al. 17β-Estradiol directly lowers mitochondrial membrane microviscosity and improves bioenergetic function in skeletal muscle. Cell Metab. 2018;27(1):167–79. https://doi.org/10.1016/j.cmet.2017.10.003.

    Article  CAS  PubMed  Google Scholar 

  119. Davies CTM, Thompson MW. Aerobic performance of female marathon and male ultramarathon athletes. Eur J Appl Physiol Occup Physiol. 1979;41(4):233–45. https://doi.org/10.1007/BF00429740.

    Article  CAS  PubMed  Google Scholar 

  120. Whyte G, Lumley S, George K, Gates P, Sharma S, Prasad K, et al. Physiological profile and predictors of cycling performance in ultra-endurance triathletes. J Sports Med Phys Fitness. 2000;40(2):103–9.

    CAS  PubMed  Google Scholar 

  121. Laursen PB, Rhodes EC. Factors affecting performance in an ultraendurance triathlon. Sports Med. 2001;31(3):195–209. https://doi.org/10.2165/00007256-200131030-00004.

    Article  CAS  PubMed  Google Scholar 

  122. Ingham SA, Whyte GP, Pedlar C, Bailey DM, Dunman N, Nevill AM. Determinants of 800-m and 1500-m running performance using allometric models. Med Sci Sports Exerc. 2008;40(2):345–50. https://doi.org/10.1249/mss.0b013e31815a83dc.

    Article  PubMed  Google Scholar 

  123. Joyner MJ. Modeling: optimal marathon performance on the basis of physiological factors. J Appl Physiol. 1991;70(2):683–7. https://doi.org/10.1152/jappl.1991.70.2.683.

    Article  CAS  PubMed  Google Scholar 

  124. Joyner MJ. Physiological limits to endurance exercise performance: influence of sex. J Physiol. 2017;595(9):2949–54. https://doi.org/10.1113/JP272268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Helgerud J, Ingjer F, Strømme SB. Sex differences in performance-matched marathon runners. Eur J Appl Physiol Occup Physiol. 1990;61(5–6):433–9. https://doi.org/10.1007/BF00236064.

    Article  CAS  PubMed  Google Scholar 

  126. Daniels J, Daniels N. Running economy of elite male and elite female runners. Med Sci Sports Exerc. 1992;24(4):483–489.

    Article  CAS  Google Scholar 

  127. Fletcher JR, Pfister TR, Macintosh BR. Energy cost of running and achilles tendon stiffness in man and woman trained runners. Physiol Rep. 2013;1(7):e00178. https://doi.org/10.1002/phy2.178.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Bourdin M, Pastene J, Germain M, Lacour JR. Influence of training, sex, age and body mass on the energy cost of running. Eur J Appl Physiol Occup Physiol. 1993;66(5):439–44. https://doi.org/10.1007/BF00599618.

    Article  CAS  PubMed  Google Scholar 

  129. Bielik V. Gender differences of running kinematics and economy in trained distance runners. Gazzetta Medica Italiana Archivio per le Scienze Mediche. 2019;178(6):403–10 https://doi.org/10.23736/S0393-3660.18.03863-9 .

    Article  Google Scholar 

  130. Yasuda N, Gaskill SE, Ruby BC. No gender-specific differences in mechanical efficiency during arm or leg exercise relative to ventilatory threshold. Scand J Med Sci Sports. 2008;18(2):205–12. https://doi.org/10.1111/j.1600-0838.2007.00637.x.

    Article  CAS  PubMed  Google Scholar 

  131. Ainegren M, Carlsson P, Tinnsten M, Laaksonen MS. Skiing economy and efficiency in recreational and elite cross-country skiers. J Strength Cond Res. 2013;27(5):1239–52. https://doi.org/10.1519/JSC.0b013e31824f206c.

    Article  PubMed  Google Scholar 

  132. Hegge AM, Bucher E, Ettema G, Faude O, Holmberg HC, Sandbakk Ø. Gender differences in power production, energetic capacity and efficiency of elite cross-country skiers during whole-body, upper-body, and arm poling. Eur J Appl Physiol. 2016;116(2):291–300. https://doi.org/10.1007/s00421-015-3281-y.

    Article  PubMed  Google Scholar 

  133. Billat V, Lepretre PM, Heugas AM, Laurence MH, Salim D, Koralsztein JP. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc. 2003;35(2):297–304. https://doi.org/10.1249/01.MSS.0000053556.59992.A9.

    Article  PubMed  Google Scholar 

  134. Lacour JR, Bourdin M. Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol. 2015;115(4):651–73. https://doi.org/10.1007/s00421-015-3115-y.

    Article  PubMed  Google Scholar 

  135. Balducci P, Clémençon M, Trama R, Blache Y, Hautier C. Performance factors in a mountain ultramarathon. Int J Sports Med. 2017;38(11):819–26. https://doi.org/10.1055/s-0043-112342.

    Article  PubMed  Google Scholar 

  136. VanHeest JL, Mahoney CE, Herr L. Characteristics of elite open-water swimmers. J Strength Cond Res. 2004;18(2):302–5. https://doi.org/10.1519/R-13513.1.

    Article  PubMed  Google Scholar 

  137. Toussaint HM, de Groot G, Savelberg HHCM, Vervoorn K, Hollander AP, van Ingen Schenau GJ. Active drag related to velocity in male and female swimmers. J Biomech. 1988;21(5):435–8. https://doi.org/10.1016/0021-9290(88)90149-2.

    Article  CAS  PubMed  Google Scholar 

  138. Cureton K, Sparling P, Evans B, Johnson S, Kong U, Purvis J. Effect of experimental alterations in excess weight on aerobic capacity and distance running performance. Med Sci Sports. 1978;10(3):194–199.

    CAS  PubMed  Google Scholar 

  139. Sandbakk Ø, Solli GS, Holmberg HC. Sex differences in world-record performance: The influence of sport discipline and competition duration. Int J Sports Physiol Perform. 2018;13(1):2–8. https://doi.org/10.1123/ijspp.2017-0196.

    Article  PubMed  Google Scholar 

  140. Pendergast DR, di Prampero PE, Craig AB, Wilson DR, Rennie DW. Quantitative analysis of the front crawl in men and women. J Appl Physiol Respir Environ Exerc Physiol. 1977;43(3):475–9. https://doi.org/10.1152/jappl.1977.43.3.475.

    Article  CAS  PubMed  Google Scholar 

  141. Lavoie JM, Montpetit RR. Applied physiology of swimming. Sports Med. 1986;3(3):165–89. https://doi.org/10.2165/00007256-198603030-00002.

    Article  CAS  PubMed  Google Scholar 

  142. Wierman ME. Sex steroid effects at target tissues: mechanisms of action. Adv Physiol Educ. 2007;31(1):26–33. https://doi.org/10.1152/advan.00086.2006.

    Article  PubMed  Google Scholar 

  143. Storer TW, Magliano L, Woodhouse L, Lee ML, Dzekov C, Dzekov J, et al. Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. J Clin Endocrinol Metab. 2003;88(4):1478–85. https://doi.org/10.1210/jc.2002-021231.

    Article  CAS  PubMed  Google Scholar 

  144. Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, et al. Testosterone dose-response relationships in healthy young men. Am J Physiol Endocrinol Metab. 2001;281(6):E1172–81. https://doi.org/10.1152/ajpendo.2001.281.6.E1172.

    Article  CAS  PubMed  Google Scholar 

  145. Gleason ED, Fuxjager MJ, Oyegbile TO, Marler CA. Testosterone release and social context: when it occurs and why. Front Neuroendocrinol. 2009;30(4):460–9. https://doi.org/10.1016/j.yfrne.2009.04.009.

    Article  CAS  PubMed  Google Scholar 

  146. Rovira-Llopis S, Bañuls C, de Marañon AM, Diaz-Morales N, Jover A, Garzon S, et al. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients. Free Radic Biol Med. 2017;108:155–62. https://doi.org/10.1016/j.freeradbiomed.2017.03.029.

    Article  CAS  PubMed  Google Scholar 

  147. Petersson SJ, Christensen LL, Kristensen JM, Kruse R, Andersen M, Højlund K. Effect of testosterone on markers of mitochondrial oxidative phosphorylation and lipid metabolism in muscle of aging men with subnormal bioavailable testosterone. Eur J Endocrinol. 2014;171(1):77–88. https://doi.org/10.1530/EJE-14-0006.

    Article  CAS  PubMed  Google Scholar 

  148. Griggs RC, Kingston W, Jozefowicz RF, Herr BE, Forbes G, Halliday D, et al. Effect of testosterone on muscle mass and muscle protein synthesis. J Appl Physiol. 1989;66(1):498–503. https://doi.org/10.1152/jappl.1989.66.1.498.

    Article  CAS  PubMed  Google Scholar 

  149. Handelsman DJ, Hirschberg AL, Bermon S. Circulating testosterone as the hormonal basis of sex differences in athletic performance. Endocrine Rev. 2018;39(5):803–29. https://doi.org/10.1210/er.2018-00020.

    Article  Google Scholar 

  150. McNulty KL, Elliott-Sale KJ, Dolan E, Swinton PA, Ansdell P, Goodall S, et al. The effects of menstrual cycle phase on exercise performance in eumenorrheic women: a systematic review and meta-analysis. Sports Med. 2020;50(10):1813–27. https://doi.org/10.1007/s40279-020-01319-3.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chidi-Ogbolu N, Baar K. Effect of estrogen on musculoskeletal performance and injury risk. Front Physiol. 2019;9:1834. https://doi.org/10.3389/fphys.2018.01834.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Tenan MS. Sex hormone effects on the nervous system and their impact on muscle strength and motor performance in women. Sex Hormones Exerc Women. 2016;. https://doi.org/10.1007/978-3-319-44558-8_4.

    Article  Google Scholar 

  153. Shultz SJ, Schmitz RJ, Beynnon BD. Variations in varus/valgus and internal/external rotational knee laxity and stiffness across the menstrual cycle. J Orthop Res. 2011;29(3):318–25. https://doi.org/10.1002/jor.21243.

    Article  PubMed  Google Scholar 

  154. The female ACL. Why is it more prone to injury? J Orthop. 2016;13(2):A1–4. https://doi.org/10.1016/S0972-978X(16)00023-4.

    Article  Google Scholar 

  155. Almekinders LC, Engle CR. Common and uncommon injuries in ultra-endurance sports. Sports Med Arthroscopy Rev. 2019;27(1):25–30. https://doi.org/10.1097/JSA.0000000000000217.

    Article  Google Scholar 

  156. Hamadeh MJ, Devries MC, Tarnopolsky MA. Estrogen supplementation reduces whole body leucine and carbohydrate oxidation and increases lipid oxidation in men during endurance exercise. J Clin Endocrinol Metab. 2005;90(6):3592–9. https://doi.org/10.1210/jc.2004-1743.

    Article  CAS  PubMed  Google Scholar 

  157. Santosa S, Jensen MD. Adipocyte fatty acid storage factors enhance subcutaneous fat storage in postmenopausal women. Diabetes. 2013;62(3):775–82. https://doi.org/10.2337/db12-0912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. D’Eon TM, Sharoff C, Chipkin SR, Grow D, Ruby BC, Braun B. Regulation of exercise carbohydrate metabolism by estrogen and progesterone in women. Am J Physiol Endocrinol Metab. 2002;283(5):E1046–55. https://doi.org/10.1152/ajpendo.00271.2002.

    Article  PubMed  Google Scholar 

  159. Isacco L, Boisseau N. Sex hormones and substrate metabolism during endurance exercise. Sex Hormones Exerc Women. 2016;. https://doi.org/10.1007/978-3-319-44558-8_3.

    Article  Google Scholar 

  160. Valencia AP, Schappal AE, Matthew Morris E, Thyfault JP, Lowe DA, Spangenburg EE. The presence of the ovary prevents hepatic mitochondrial oxidative stress in young and aged female mice through glutathione peroxidase 1. Exp Gerontol. 2016;73:14–22. https://doi.org/10.1016/j.exger.2015.11.011.

    Article  CAS  PubMed  Google Scholar 

  161. Baltgalvis KA, Greising SM, Warren GL, Lowe DA. Estrogen regulates estrogen receptors and antioxidant gene expression in mouse skeletal muscle. PLoS ONE. 2010;5(4):e10164. https://doi.org/10.1371/journal.pone.0010164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vezzoli A, Dellanoce C, Mrakic-Sposta S, Montorsi M, Moretti S, Tonini A, et al. Oxidative stress assessment in response to ultraendurance exercise: thiols redox status and ros production according to duration of a competitive race. Oxidative Med Cell Longevity. 2016;. https://doi.org/10.1155/2016/6439037.

    Article  Google Scholar 

  163. Heikura IA, Uusitalo ALT, Stellingwerff T, Bergland D, Mero AA, Burke LM. Low energy availability is difficult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int J Sport Nutr Exerc Metab. 2018;28(4):403–11. https://doi.org/10.1123/ijsnem.2017-0313.

    Article  CAS  PubMed  Google Scholar 

  164. Miller S, Kukuljan S, Turner A, van der Pligt P, Ducher G. Energy deficiency, menstrual disturbances, and low bone mass: what do exercising Australian women know about the female athlete triad? Int J Sport Nutr Exerc Metab. 2012;22(2):131–8. https://doi.org/10.1123/ijsnem.22.2.131.

    Article  PubMed  Google Scholar 

  165. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82. https://doi.org/10.1249/mss.0b013e318149f111.

    Article  PubMed  Google Scholar 

  166. Riggs BL. The mechanisms of estrogen regulation of bone resorption. J Clin Investig. 2000;106(10):1203–4. https://doi.org/10.1172/JCI11468.

    Article  CAS  PubMed  Google Scholar 

  167. Chen YT, Tenforde AS, Fredericson M. Update on stress fractures in female athletes: epidemiology, treatment, and prevention. Curr Rev Musculoskelet Med. 2013;6(2):173–81. https://doi.org/10.1007/s12178-013-9167-x.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Papageorgiou M, Elliott-Sale KJ, Parsons A, Tang JCY, Greeves JP, Fraser WD, et al. Effects of reduced energy availability on bone metabolism in women and men. Bone. 2017;105:191–9. https://doi.org/10.1016/j.bone.2017.08.019.

    Article  CAS  PubMed  Google Scholar 

  169. Elliott-Sale KJ, Tenforde AS, Parziale AL, Holtzman B, Ackerman KE. Endocrine effects of relative energy deficiency in sport. Int J Sport Nutr Exerc Metab. 2018;28(4):335–49. https://doi.org/10.1123/ijsnem.2018-0127.

    Article  CAS  PubMed  Google Scholar 

  170. Martin D, Sale C, Cooper SB, Elliott-Sale KJ. Period prevalence and perceived side effects of hormonal contraceptive use and the menstrual cycle in elite athletes. Int J Sports Physiol Perform. 2018;13(7):926–32. https://doi.org/10.1123/ijspp.2017-0330.

    Article  PubMed  Google Scholar 

  171. de Oliveira EP, Burini RC, Jeukendrup A. Gastrointestinal complaints during exercise: prevalence, etiology, and nutritional recommendations. Sports Med. 2014;44(1):79–85. https://doi.org/10.1007/s40279-014-0153-2.

    Article  PubMed Central  Google Scholar 

  172. Riddoch C, Trinick T. Gastrointestinal disturbances in marathon runners. Br J Sports Med. 1988;22(2):71–4. https://doi.org/10.1136/bjsm.22.2.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Stuempfle KJ, Hoffman MD. Gastrointestinal distress is common during a 161-km ultramarathon. J Sports Sci. 2015;33(17):1814–21. https://doi.org/10.1080/02640414.2015.1012104.

    Article  PubMed  Google Scholar 

  174. Wilson PB. ‘I think I’m gonna hurl’: a narrative review of the causes of nausea and vomiting in sport. Sports (Basel). 2019;7(7):162. https://doi.org/10.3390/sports7070162.

    Article  PubMed Central  Google Scholar 

  175. Rowlands DS, Swift M, Ros M, Green JG. Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance. Appl Physiol Nutr Metab. 2012;37(3):425–36. https://doi.org/10.1139/h2012-013.

    Article  CAS  PubMed  Google Scholar 

  176. O’Brien WJ, Stannard SR, Clarke JA, Rowlands DS. Fructose-maltodextrin ratio governs exogenous and other CHO oxidation and performance. Med Sci Sports Exerc. 2013;45(9):1814–24. https://doi.org/10.1249/MSS.0b013e31828e12d4.

    Article  CAS  PubMed  Google Scholar 

  177. Costa RJS, Hoffman MD, Stellingwerff T. Considerations for ultra-endurance activities: part 1- nutrition. Res Sports Med. 2019;27(2):166–81. https://doi.org/10.1080/15438627.2018.1502188.

    Article  PubMed  Google Scholar 

  178. Hoffman MD, Fogard K. Factors related to successful completion of a 161-km ultramarathon. Int J Sports Physiol Perform. 2011;6(1):25–37. https://doi.org/10.1123/ijspp.6.1.25.

    Article  PubMed  Google Scholar 

  179. Costa RJS, Snipe RMJ, Kitic CM, Gibson PR. Systematic review: exercise-induced gastrointestinal syndrome—implications for health and intestinal disease. Aliment Pharmacol Ther. 2017;46(3):246–65. https://doi.org/10.1111/apt.14157.

    Article  CAS  PubMed  Google Scholar 

  180. Wilson PB. Does carbohydrate intake during endurance running improve performance? A critical review. J Strength Cond Res. 2016;30(12):3539–59. https://doi.org/10.1519/JSC.0000000000001430.

    Article  PubMed  Google Scholar 

  181. Cox AJ. Variations in size of the human stomach. Cal West Med. 1945;63(6):267–8.

    PubMed  PubMed Central  Google Scholar 

  182. Bouras EP, Delgado-Aros S, Camilleri M, Castillo EJ, Burton DD, Thomforde GM, et al. SPECT imaging of the stomach: comparison with barostat, and effects of sex, age, body mass index, and fundoplication. Gut. 2002;51(6):781–6. https://doi.org/10.1136/gut.51.6.781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Monrroy H, Borghi G, Pribic T, Galan C, Nieto A, Amigo N, et al. Biological response to meal ingestion: gender differences. Nutrients. 2019;11(3):702. https://doi.org/10.3390/nu11030702.

    Article  CAS  PubMed Central  Google Scholar 

  184. Probert CJS, Emmett PM, Heaton KW. Intestinal transit time in the population calculated from self made observations of defecation. J Epidemiol Community Health. 1993;47(4):331–3. https://doi.org/10.1136/jech.47.4.331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Rao SSC, Kuo B, McCallum RW, Chey WD, DiBaise JK, Hasler WL, et al. Investigation of colonic and whole-gut transit with wireless motility capsule and radiopaque markers in constipation. Clin Gastroenterol Hepatol. 2009;7(5):537–44. https://doi.org/10.1016/j.cgh.2009.01.017.

    Article  PubMed  Google Scholar 

  186. Mori H, Suzuki H, Matsuzaki J, Taniguchi K, Shimizu T, Yamane T, et al. Gender difference of gastric emptying in healthy volunteers and patients with functional dyspepsia. Digestion. 2017;95(1):72–8. https://doi.org/10.1159/000452359.

    Article  CAS  PubMed  Google Scholar 

  187. Datz F, Christian P, Moore J. Gender-related differences in gastric emptying. J Nucl Med. 1987;28(7):1204–1207.

    CAS  PubMed  Google Scholar 

  188. Gangula PRR, Sekhar KR, Mukhopadhyay S. Gender bias in gastroparesis: is nitric oxide the answer? Digestive Dis Sci. 2011;56(9):2520–7. https://doi.org/10.1007/s10620-011-1735-6.

    Article  CAS  Google Scholar 

  189. Kim YS, Unno T, Kim BY, Park MS. Sex differences in gut microbiota. World J Mens Health. 2020;38(1):48–60. https://doi.org/10.5534/wjmh.190009.

    Article  PubMed  Google Scholar 

  190. Pires W, Veneroso CE, Wanner SP, Pacheco DAS, Vaz GC, Amorim FT, et al. Association between exercise-induced hyperthermia and intestinal permeability: a systematic review. Sports Med. 2017;47(7):1389–403. https://doi.org/10.1007/s40279-016-0654-2.

    Article  PubMed  Google Scholar 

  191. Stuempfle KJ, Valentino T, Hew-Butler T, Hecht FM, Hoffman MD. Nausea is associated with endotoxemia during a 161-km ultramarathon. J Sports Sci. 2016;34(17):1662–8. https://doi.org/10.1080/02640414.2015.1130238.

    Article  PubMed  Google Scholar 

  192. Brock-Utne J, Gaffin S, Wells M, Gathiram P, Sohar E, James M, et al. Endotoxaemia in exhausted runners after a long-distance race. S Afr Med J. 1988;73(9):533–536.

    CAS  PubMed  Google Scholar 

  193. Jeukendrup A, Vet-Joop K, Sturk A, Stegen J, Senden J, Saris W, et al. Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clin Sci (London). 2000;98(1):47–55.

    Article  CAS  Google Scholar 

  194. Edogawa S, Peters SA, Jenkins GD, Gurunathan SV, Sundt WJ, Johnson S, et al. Sex differences in NSAID-induced perturbation of human intestinal barrier function and microbiota. FASEB J. 2018;32(12):6615–25. https://doi.org/10.1096/fj.201800560R.

    Article  CAS  PubMed Central  Google Scholar 

  195. Mujagic Z, Ludidi S, Keszthelyi D, Hesselink MAM, Kruimel JW, Lenaerts K, et al. Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders. Aliment Pharmacol Ther. 2014;40(3):288–97. https://doi.org/10.1111/apt.12829.

    Article  CAS  PubMed  Google Scholar 

  196. Suenaert B, Bulteel V, Den Hond H, Hiele M, Peeters M, et al. The effects of smoking and indomethacin on small intestinal permeability. Aliment Pharmacol Ther. 2000;14(6):819–22. https://doi.org/10.1046/j.1365-2036.2000.00754.x.

    Article  CAS  PubMed  Google Scholar 

  197. Haug TT, Mykletun A, Dahl AA. Are anxiety and depression related to gastrointestinal symptoms in the general population? Scand J Gastroenterol. 2002;37(3):294–8. https://doi.org/10.1080/003655202317284192.

    Article  PubMed  Google Scholar 

  198. Bytzer P, Howell S, Leemon M, Young LJ, Jones MP, Talley NJ. Low socioeconomic class is a risk factor for upper and lower gastrointestinal symptoms: a population based study in 15,000 Australian adults. Gut. 2001;49(1):66–72. https://doi.org/10.1136/gut.49.1.66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Tibblin G, Bengtsson C, Furunes B, Lapidus L. Symptoms by age and sex: the population studies of men and women in Gothenburg. Sweden. Scand J Prim Health Care. 1990;8(1):9–17. https://doi.org/10.3109/02813439008994923.

    Article  CAS  PubMed  Google Scholar 

  200. Moore J, Barlow D, Jewell D, Kennedy S. Do gastrointestinal symptoms vary with the menstrual cycle? Br J Obstet Gynaecol. 1998;105(12):1322–5. https://doi.org/10.1111/j.1471-0528.1998.tb10014.x.

    Article  CAS  PubMed  Google Scholar 

  201. ter Steege RWF, van der Palen J, Kolkman JJ. Prevalence of gastrointestinal complaints in runners competing in a long-distance run: an internet-based observational study in 1281 subjects. Scand J Gastroenterol. 2008;43(12):1477–82. https://doi.org/10.1080/00365520802321170.

    Article  PubMed  Google Scholar 

  202. Rehrer NJ, Janssen GME, Brouns F, Saris WHM. Fluid intake and gastrointestinal problems in runners competiting in a 25-km race and a marathon. Int J Sports Med. 1989;10(1):S22–5. https://doi.org/10.1055/s-2007-1024950.

    Article  PubMed  Google Scholar 

  203. Keeffe EB, Lowe DK, Goss JR, Wayne R. Gastrointestinal symptoms of marathon runners. West J Med. 1984;141(4):481–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Wilson PB, Rhodes GS, Ingraham SJ. Saccharide composition of carbohydrates consumed during an ultra-endurance triathlon. J Am Coll Nutr. 2015;34(6):497–506. https://doi.org/10.1080/07315724.2014.996830.

    Article  CAS  PubMed  Google Scholar 

  205. Costa RJ, Swancott AJ, Gill S, Hankey J, Scheer V, Murray A, et al. Compromised energy and macronutrient intake of ultra-endurance runners during a multi-stage ultra-marathon conducted in a hot ambient environment. Int J Sports Sci. 2013;3(2):51–62. https://doi.org/10.5923/j.sports.20130302.03.

    Article  Google Scholar 

  206. Jeukendrup AE. Training the gut for athletes. Sports Med. 2017;47(1):101–10. https://doi.org/10.1007/s40279-017-0690-6.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Levine MS, Spencer G, Alavi A, Metz DC. Competitive speed eating: truth and consequences. AJR Am J Roentgenol. 2007;189(3):681–6. https://doi.org/10.2214/AJR.07.2342.

    Article  PubMed  Google Scholar 

  208. Cox GR, Clark SA, Cox AJ, Halson SL, Hargreaves M, Hawley JA, et al. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. J Appl Physiol. 2010;109(1):126–34. https://doi.org/10.1152/japplphysiol.00950.2009.

    Article  CAS  PubMed  Google Scholar 

  209. Miall A, Khoo A, Rauch C, Snipe RMJ, Camões-Costa VL, Gibson PR, et al. Two weeks of repetitive gut-challenge reduce exercise-associated gastrointestinal symptoms and malabsorption. Scand J Med Sci Sports. 2018;28(2):630–40. https://doi.org/10.1111/sms.12912.

    Article  CAS  PubMed  Google Scholar 

  210. Costa RJS, Miall A, Khoo A, Rauch C, Snipe R, Camões-Costa V, et al. Gut-training: the impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Appl Physiol Nutr Metab. 2017;42(5):547–57. https://doi.org/10.1139/apnm-2016-0453.

    Article  CAS  PubMed  Google Scholar 

  211. Viribay A, Arribalzaga S, Mielgo-Ayuso J, Castañeda-Babarro A, Seco-Calvo J, Urdampilleta A. Effects of 120 g/h of carbohydrates intake during a mountain marathon on exercise-induced muscle damage in elite runners. Nutrients. 2020;12(5):1367. https://doi.org/10.3390/nu12051367.

    Article  CAS  PubMed Central  Google Scholar 

  212. Impey S, Jevons E, Mees G, Cocks M, Strauss J, Chester N, et al. Glycogen utilization during running: intensity, sex, and muscle-specific responses. Med Sci Sports Exerc. 2020;52(9):1966–75. https://doi.org/10.1249/MSS.0000000000002332.

    Article  CAS  PubMed  Google Scholar 

  213. Costa RJS, Gill SK, Hankey J, Wright A, Marczak S. Perturbed energy balance and hydration status in ultra-endurance runners during a 24 h ultra-marathon. Br J Nutr. 2014;112(3):428–37. https://doi.org/10.1017/S0007114514000907.

    Article  CAS  PubMed  Google Scholar 

  214. Wardenaar FC, Dijkhuizen R, Ceelen IJM, Jonk E, de Vries JHM, Witkamp RF, et al. Nutrient intake by ultramarathon runners: can they meet recommendations? Int J Sport Nutr Exerc Metab. 2015;25(4):375–86. https://doi.org/10.1123/ijsnem.2014-0199.

    Article  CAS  PubMed  Google Scholar 

  215. Gagnon D, Kenny GP. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J Physiol. 2012;590(23):5963–73. https://doi.org/10.1113/jphysiol.2012.240739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hajali V, Andersen ML, Negah SS, Sheibani V. Sex differences in sleep and sleep loss-induced cognitive deficits: the influence of gonadal hormones. Horm Behav. 2019;108:50–61. https://doi.org/10.1016/j.yhbeh.2018.12.013.

    Article  CAS  PubMed  Google Scholar 

  217. Deaner RO, Balish SM, Lombardo MP. Sex differences in sports interest and motivation: an evolutionary perspective. Evol Behav Sci. 2016;10(2):73–97. https://doi.org/10.1037/ebs0000049.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Sue Ward (University of Leeds, UK) for her guidance in developing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas B. Tiller.

Ethics declarations

Funding

No funding was received in developing this manuscript. Nicholas B. Tiller is funded by a postdoctoral fellowship from the Tobacco-Related Disease Research Program (TRDRP; award no. T31FT1692).

Conflict of interest

Nicholas B. Tiller, Kirsty J. Elliott-Sale, Beat Knechtle, Patrick B. Wilson, Justin D. Roberts and Guillaume Y. Millet declare that they have no conflicts of interest relevant to the content of this review.

Author contributions

NBT, GYM, KJES, and PBW drafted the manuscript; JDR and BK provided additional comments and contributions; all authors approved the final version.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiller, N.B., Elliott-Sale, K.J., Knechtle, B. et al. Do Sex Differences in Physiology Confer a Female Advantage in Ultra-Endurance Sport?. Sports Med 51, 895–915 (2021). https://doi.org/10.1007/s40279-020-01417-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-020-01417-2

Navigation