Skip to main content
Log in

Determination of parameters of double-ellipsoidal heat source model based on optimization method

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

To determine the parameters of the double-ellipsoidal heat source model (DEHSM) in welding simulations, a technique is developed to extract the parameters of weld pool shape from the simulation results. The technique is developed based on the knowledge of the isoparametric transformation and computer graphics, and its validity is verified by a graphic comparison. It is shown that the technique can effectively extract and reflect the shape of weld pools without interrupting the solution process of the DEHSM parameters. Second, using this technique in conjunction with the optimization method, an approach is proposed to determine the DEHSM parameters. Next, using the proposed method, the DEHSM parameters associated with four different welding conditions are determined. Finally, with these parameters, their corresponding weld widths and penetrations are compared with the measured ones. The results demonstrate that the proposed method can efficiently determine the DEHSM parameters with a relatively high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15(2):299–305. https://doi.org/10.1007/BF02667333

    Article  Google Scholar 

  2. Mondal AK, Biswas P, Bag S (2017) Prediction of welding sequence induced thermal history and residual stresses and their effect on welding distortion. Weld World 61(4):711–721. https://doi.org/10.1007/s40194-017-0468-3

    Article  Google Scholar 

  3. Gu Y, Li YD, Qiang B, Boko-Haya DD (2017) Welding distortion prediction based on local displacement in the weld plastic zone. Weld World 61(2):333–340. https://doi.org/10.1007/s40194-016-0418-5

    Article  Google Scholar 

  4. Guo XK, Li PL, Chen JM, Lu H (2009) Inversing parameter values of double ellipsoid source model during multiple wires submerged arc welding by using Step Acceleration Method. Trans China Weld Inst 30(2):53–56+155. https://doi.org/10.3321/j.issn:0253-360X.2009.02.014

    Google Scholar 

  5. Guo XK (2009) Inversing parameter values of double ellipsoid source model during multiple wires submerged arc welding by using Pattern Search Method. Dissertation, Shanghai Jiaotong University

  6. Gery D, Long H, Maropoulos P (2005) Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding. J Mater Process Technol 167(2–3):393–401. https://doi.org/10.1016/j.jmatprotec.2005.06.018

    Article  Google Scholar 

  7. Li PL, Lu H (2011) Influence of multi-wire submerged arc welding process on heat source parameters. Trans China Weld Inst 32(6):13–16+20

    Google Scholar 

  8. Price JWH, Paradowska A, Joshi S, Finlayson T (2006) Residual stresses measurement by neutron diffraction and theoretical estimation in a single weld bead. Int J Press Vessel Pip 83(5):381–387. https://doi.org/10.1016/j.ijpvp.2006.02.015

    Article  Google Scholar 

  9. Joshi S, Hildebrand J, Aloraier AS, Rabczuk T (2013) Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on a substrate plate. Comput Mater Sci 69:559–565. https://doi.org/10.1016/j.commatsci.2012.11.029

    Article  Google Scholar 

  10. Azar AS, As SK, Akselsen OM (2012) Determination of welding heat source parameters from actual bead shape. Comput Mater Sci 54:176–182. https://doi.org/10.1016/j.commatsci.2011.10.025

    Article  Google Scholar 

  11. Li PL, Lu H (2011) Sensitivity analysis and prediction of double ellipsoid heat source parameters. Trans China Weld Inst 31(11):89–91+95+117

    Google Scholar 

  12. Guo GF, Wang Y, Han T, Jia PY (2013) Application of double-ellipsoid heat source parameters adjustment on prediction of pool size of in-service welding. Pressure Vessel Technol 30(1):15–19+39. https://doi.org/10.3969/j.issn.1001-4837.2013.01.002

    Google Scholar 

  13. Wang Y, Zhao HY, Wu S, Zhang JQ (2003) Shape parameter determination of double ellipsoid heat source model in numerical simulation of high energy beam welding. Trans China Weld Inst 24(2):67–70+1. https://doi.org/10.3321/j.issn:0253-360X.2003.02.018

    Google Scholar 

  14. Sharma A, Chaudhary AK (2009) Estimation of heat source model parameters for twin-wire submerged arc welding. Int J Adv Manuf Technol 45(11–12):1096–1103. https://doi.org/10.1007/s00170-009-2046-3

    Article  Google Scholar 

  15. Wahab MA, Painter MJ, Davies MH (1998) The prediction of the temperature distribution and weld pool geometry in the gas metal arc welding process. J Mater Process Technol 77(1–3):233–239. https://doi.org/10.1016/S0924-0136(97)00422-6

    Article  Google Scholar 

  16. Rosenthal D (1941) Mathematical theory of heat distribution during welding and cutting. Weld J 20(5):220–234

    Google Scholar 

  17. Rouquette S, Guo J, Le Masson P (2007) Estimation of the parameters of a Gaussian heat source by the Levenberg–Marquardt method: application to the electron beam welding. Int J Therm Sci 46(2):128–138. https://doi.org/10.1016/j.ijthermalsci.2006.04.015

    Article  Google Scholar 

  18. Jia X, Xu J, Liu Z, Huang S, Fan Y, Sun Z (2014) A new method to estimate heat source parameters in gas metal arc welding simulation process. Fusion Eng Des 89(1):40–48. https://doi.org/10.1016/j.fusengdes.2013.11.006

    Article  Google Scholar 

  19. Li PL, Lu H (2012) Hybrid heat source model designing and parameter prediction on tandem submerged arc welding. Int J Adv Manuf Technol 62(5–8):577–585. https://doi.org/10.1007/s00170-011-3829-x

    Article  Google Scholar 

  20. Deng D, Murakawa H (2006) Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comput Mater Sci 37(3):269–277. https://doi.org/10.1016/j.commatsci.2005.07.007

    Article  Google Scholar 

  21. Brickstad B, Josefson BL (1998) A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. Int J Press Vessel Pip 75(1):11–25. https://doi.org/10.1016/s0308-0161(97)00117-8

    Article  Google Scholar 

  22. Zhang X, Xiong J, Hao X, Lai R (2008) Topological optimization of slide of machining center based on ANSYS. Manuf Technol Mach Tool (6):67–70. https://doi.org/10.3969/j.issn.1005-2402.2008.06.020

  23. Yoo HH, Cho JE, Chung J (2006) Modal analysis and shape optimization of rotating cantilever beams. J Sound Vib 290(1–2):223–241. https://doi.org/10.1016/j.jsv.2005.03.014

    Article  Google Scholar 

  24. Yuan B, Ren FM, Zhong GQ, Zhou J (2011) Optimal design of spatial grid structure using group search optimization. Adv Mater Res 243-249(2011):6044–6048. https://doi.org/10.4028/www.scientific.net/amr.243-249.6044

    Article  Google Scholar 

  25. Radaj D (2012) Heat effects of welding: temperature field, residual stress, distortion. Springer Science & Business Media

  26. Beck A (2017) First-order methods in optimization, vol 25. SIAM

  27. Li PL (2012) Study on the simulation of multi-wire submerged arc welding heat source model and appearance of weld. Dissertation, Shanghai Jiaotong University

Download references

Funding

The authors gratefully acknowledge the support provided by the National Natural Science Foundation of China (Grant Nos. 51708467 and 51378430) and the Doctoral Found of Southwest University of Science and Technology (Grant No. 16zx7134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Li.

Additional information

Recommended for publication by Commission XV - Design, Analysis, and Fabrication of Welded Structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Li, Y.D., Yong, Y. et al. Determination of parameters of double-ellipsoidal heat source model based on optimization method. Weld World 63, 365–376 (2019). https://doi.org/10.1007/s40194-018-00678-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-018-00678-w

Keywords

Navigation